Ball comparison for three optimal eight order methods under weak conditions
Abstract
Keywords
Full Text:
PDFReferences
I.K. Argyros, Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Austral.
Math. Soc. 32(1985), 275-292.
I.K. Argyros, D. Chen, Results on the Chebyshev method in Banach spaces, Proyecciones 12(2)(1993), 119-128.
Argyros, I.K., A unifying local--semilocal
convergence analysis and applications for two--point Newton--like methods in Banach space, {J. Math. Anal. Appl.}, 298 (2004), 374--397.
I.K. Argyros, Computational theory of iterative methods. Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co. New York, U.S.A, 2007.
I.K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton's method. J. Complexity 28 (2012), 364--387.
I.K. Argyros, S. Hilout, Numerical methods in Nonlinear Analysis, World Scientific Publ. Comp. New Jersey, 2013.
I. K. Argyros, S. George and A. Alberto Magrenan, Local convergence for multi-point-parametric Chebyshev-Halley-type methods of high convergence order, Journal of Computational and Applied Mathematics 282 (2015), 215--224.
V. Candela, A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev method, Computing, 45(1990), 355-367.
C. Chun, P. Stanica, B. Neta, Third order family of methods in Banach spaces, Computers and Mathematics with Applications 61(2011), 1665-1675.
J.M. Guti'errez, M.A. Hern'andez, Recurrence relations for the super-Halley method,
Computers Math. Applic. 36(1998), 1-8.
M.A. Hern'{a}ndez, M.A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence
of the Chebyshev method, Journal of Computational and Applied Mathematics, 126(2000), 131-143.
M.A. Hern'{a}ndez, Chebyshev's approximation algorithms and applications,
Computers Math. Applic. 41(2001),433-455.
M.A. Hern'{a}ndez,Second-Derivative-Free variant of the Chebyshev method for nonlinear equations, Journal of Optimization Theory and Applications, 104(3), (2000), 501-515.
J. L. Hueso, E. Martinez, C. Tervel, Convergence, efficiency and dynemics of new fourth and sixth order families of iterative methods for nonlinear systems, J. Comput. Appl. Math. 275, (2015), 412--420.
L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
'A.A. Magre~{n}'an,
Estudio de la din'amica del m'etodo de Newton amortiguado (PhD Thesis),
Servicio de Publicaciones, Universidad de La Rioja, 2013.
url{http://dialnet.unirioja.es/servlet/tesis?codigo=38821}
M.S. Petkovic, B. Neta, L. Petkovic, J Dv{z}univ{c}, Multipoint methods for solving nonlinear equations, Elsevier, 2013.
W.C. Rheinboldt,An adaptive continuation process for solving systems of nonlinear equations, In: Mathematical models and numerical methods (A.N.Tikhonov et al. eds.) pub.3, (19), 129-142 Banach Center, Warsaw Poland.
H. I. Siyyam, M. Taib, I. A. Alsubaihi, A new one parameter family of iterative methods with eight-order of convergence for solving nonlinear equations, Itern. J. Pure and Appl. Math., 84, 4, (2013), 451-461.
J.R. Sharma, Some fifth and sixth order iterative methods for solving nonlinear equations, Ranji Sharma Int. Journal of Engineering Research and Applications, Vol.4, Issue 2 (Version 1), February 2014, 268--273.
J.F. Traub, Iterative methods for the solution of equations, Prentice- Hall Series in Automatic Computation, Englewood Cliffs, N. J., 1964.
X. Wang, J. Kou, Semilocal convergence and R-order for modified Chebyshev-Halley methods, Numerical Algorithms, 64 (1), (2013), 105--126.
X. Wang, L. Liu, New eight-oredr iterative methods for solving nonlinear equations, J. Comput. Appl. Math., 234, (2010), 1611-1620.
DOI: http://dx.doi.org/10.24193/subbmath.2019.3.12
Refbacks
- There are currently no refbacks.