Subclasses of p-valent meromorphic functions involving certain operator

Adela O. Moustafa, Mohamed K . Aouf

Abstract


In this paper we investigate some inclusion relationships of two new
subclassses of meromorphically p-valent functions, dened by means
of a linear operator. We also study some integral preserving properties
and convolution properties of these classes.


Keywords


Analytic, p-valent, meromorphic, linear operator, dif- ferential subordination inclusion relationships.

Full Text:

PDF

References


E. Aqlan, J. M. Jahangiri and S. R. Kulkarni, Certain integral operators

applied to meromorphic p-valent functions, J. Nat. Geom., 24 (2003),

-120.

____________________________________________________________

T. Bulboaca, Di¤erential Subordinations and Superordinations, Recent

Results, House of Scienti c Book Publ., Cluj-Napoca, 2005.

_____________________________________________________

P. Eenigenberg, S. S. Miller, P. T. Mocanu and M. O. Reade, On Briot-

Bouquet di¤erential subordination, Gen. Inequal., 3 (1983), 339-348.

____________________________________________________

V. Kumar and S. L. Shukla, Certain integrals for classes of p-valent

meromorphic functions, Bull. Aust. Math. Soc., 25(1982), 85-97.

_____________________________________________________

S. S. Miller and P. T. Mocanu, Di¤erential Subordination : Theory and

Applications, Series on Monographs and Textbooks in Pure and Applied

Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.

____________________________________________________

S. S. Miller and P. T. Mocanu, Di¤erential subordinations and univalent

functions, Michigan Math. J., 28 (1981), no. 2, 157-171.

_______________________________________________________

S. S. Miller and P. T. Mocanu, Di¤erential subordinations and inequali-

ties in the complex plane, J. Di¤erential Equations, 67 (1987), 199-211.

__________________________________________________________

A. O. Mostafa, Inclusion results for certain subcasses of p-valent mero-

morphic functions associated with a new operator, J. Ineq. Appl.,

(2012), 1-14.

_________________________________________________________

St. Ruscheweyh, Convolutions in Geometric Function Theory,

Se´minaire de Mathe´matiques Supe´rieures, vol. 83, Les Presses de

Universite´ de Montre´al, Montreal, Quebec, 1982.

___________________________________________________

B. A. Uralegaddi and C. Somanatha, Certain classes of meromorphic

multivalent functions, Tamkang J. Math. 23 (1992), 223231.

______________________________________________________

D. -G. Yang, Certain convolution operators for meromorphic functions,

South. Asian Bull. Math., 25 (2001), 175-186.




DOI: http://dx.doi.org/10.24193/subbmath.2018.3.03

Refbacks

  • There are currently no refbacks.