Subclasses of p-valent meromorphic functions involving certain operator
Abstract
In this paper we investigate some inclusion relationships of two new
subclassses of meromorphically p-valent functions, dened by means
of a linear operator. We also study some integral preserving properties
and convolution properties of these classes.
Keywords
Full Text:
PDFReferences
E. Aqlan, J. M. Jahangiri and S. R. Kulkarni, Certain integral operators
applied to meromorphic p-valent functions, J. Nat. Geom., 24 (2003),
-120.
____________________________________________________________
T. Bulboaca, Di¤erential Subordinations and Superordinations, Recent
Results, House of Scienti c Book Publ., Cluj-Napoca, 2005.
_____________________________________________________
P. Eenigenberg, S. S. Miller, P. T. Mocanu and M. O. Reade, On Briot-
Bouquet di¤erential subordination, Gen. Inequal., 3 (1983), 339-348.
____________________________________________________
V. Kumar and S. L. Shukla, Certain integrals for classes of p-valent
meromorphic functions, Bull. Aust. Math. Soc., 25(1982), 85-97.
_____________________________________________________
S. S. Miller and P. T. Mocanu, Di¤erential Subordination : Theory and
Applications, Series on Monographs and Textbooks in Pure and Applied
Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
____________________________________________________
S. S. Miller and P. T. Mocanu, Di¤erential subordinations and univalent
functions, Michigan Math. J., 28 (1981), no. 2, 157-171.
_______________________________________________________
S. S. Miller and P. T. Mocanu, Di¤erential subordinations and inequali-
ties in the complex plane, J. Di¤erential Equations, 67 (1987), 199-211.
__________________________________________________________
A. O. Mostafa, Inclusion results for certain subcasses of p-valent mero-
morphic functions associated with a new operator, J. Ineq. Appl.,
(2012), 1-14.
_________________________________________________________
St. Ruscheweyh, Convolutions in Geometric Function Theory,
Se´minaire de Mathe´matiques Supe´rieures, vol. 83, Les Presses de
Universite´ de Montre´al, Montreal, Quebec, 1982.
___________________________________________________
B. A. Uralegaddi and C. Somanatha, Certain classes of meromorphic
multivalent functions, Tamkang J. Math. 23 (1992), 223231.
______________________________________________________
D. -G. Yang, Certain convolution operators for meromorphic functions,
South. Asian Bull. Math., 25 (2001), 175-186.
DOI: http://dx.doi.org/10.24193/subbmath.2018.3.03
Refbacks
- There are currently no refbacks.