Integral estimates for a class Bn of operators
DOI:
https://doi.org/10.24193/subbmath.2018.2.02Keywords:
Lp norm, inequalities, B-operator, Polynomials, InequalitiesAbstract
Let $\mathcal{P}_{n}$ be the class of polynomials of degree at most $n$. Rahman introduced a class $\mathcal {B}_{n}$ of operators $\mathcal{B}$ that map $\mathcal {P}_{n}$ into itself. In this paper, we establish certain integral estimates concerning $\mathcal{B}$-operator, and thereby obtain generalizations as well as improvements of some well known inequalities for polynomials.References
bibitem{Are} V. V. Arest"{o}v, textit{On integral inequalities for trigonometric polynomials and their derivatives}, Izv. Akad. Nauk. SSSR. Ser. Mat., textbf{45} (1981), 3-22 (in Russian); Math. USSR-Izv., textbf{18} (1982), 1--17 (in English).
bibitem{AD1} A. Aziz and Q. M. Dawood, textit{Inequalities for a polynomial and its derivative}, J. Approx. Theory, textbf{54} (1988), 306-313.
bibitem{Azi3} A. Aziz and N. A. Rather, textit{Some compact generalizations of Zygmund-type inequalities for polynomials}, Nonlinear Studies, textbf{6}(1999), 241--255.
bibitem{AS} A. Aziz and W. M. Shah,textit{ $L^p$ inequalities for polynomials with restricted zeros,} Glasnik Matematiki, textbf{57}(2002), 73--81.
bibitem{Ber} S. Bernstein, Sur la limitation des d'eriv'{e}es des polynomes,~textit{C. R. Acad. Sci. Paris.,}
textbf{190}(1930), ~338-340.
bibitem{BR1} R. P. Boas Jr. and Q. I. Rahman, textit{$L^{p}$ inequalities for polynomials and entire functions}, Arch. Rational Mech. Anal., textbf{11} (1962), 34--39.
bibitem{Bru1} N. G. de Bruijn, textit{Inequalities concerning polynomials in the complex domain}, Neder. Akad. Wetensch. Proc., textbf{50} (1947), 1265--1272.
bibitem{GSL} N. K. Govil, A. Liman and W. M. Shah, textit{Some inequalities concerning derivative and maximum modulus of polynomials,}
~textit{Aust. J. Math. Anal. Appl.,}~textbf{8}(2011),~1--8.
bibitem{Har1} G.H.Hardy, textit{The mean value of the modulus of an analytic function,} Proc. London. Math. Soc., textbf{14} (1915), 269--277.
bibitem{Lax1} P. D. Lax, textit{Proof of a conjecture of P. Erd"{o}s on the derivative of a polynomial}, Bull. Amer. Math. Soc., textbf{50} (1944), 509--513.
bibitem{Mar1} M. Marden, Geometry of polynomials, IInd Ed., Math. Surveys, No.3, Amer. Math. Pro., R.I., 1996.
bibitem{RS1} Q. I. Rahman and G. Schmeisser, textit{$L^{p}$ inequalities for polynomials}, J. Approx. Theory, textbf{53} (1988), 26--32.
bibitem{RS} Q. I. Rahman and G. Schmeisser, textit{Analytic Theory of Polynomials}. Oxford Univ. Press, 2002.
bibitem {WL} W. M. Shah, and A. Liman, textit{An operator preserving inequalities between polynomials}, J. Inequal. Pure Appl. Math., textbf{9} (2009), 1--12.
bibitem{sl} W. M. Shah and A. Liman, textit{Integral estimates for the family of B-operators}, Operators and Matrices, textbf{5}(2011)
--87.
bibitem{WSL} S. L. Wali, W. M. Shah and A. Liman, textit{Inequalities Concerning B-Operators}, Probl. Anal. Issues Anal. textbf{23}(5)(2016), 55–-72.
bibitem{Zyg} A. Zygmund, textit{A remark on conjugate series}, Proc. London~ Math. Soc., textbf{34}(2) (1932), 392--400.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.