Integral estimates for a class Bn of operators

Shah Lubna Wali, Abdul Liman

Abstract


Let $\mathcal{P}_{n}$ be the class of polynomials of degree at most $n$. Rahman introduced a class $\mathcal {B}_{n}$ of operators $\mathcal{B}$ that map $\mathcal {P}_{n}$ into itself.  In this paper, we establish certain integral estimates concerning $\mathcal{B}$-operator, and thereby obtain generalizations as well as improvements  of some well known  inequalities for polynomials.

Keywords


Lp norm, inequalities, B-operator, Polynomials, Inequalities

Full Text:

PDF

References


bibitem{Are} V. V. Arest"{o}v, textit{On integral inequalities for trigonometric polynomials and their derivatives}, Izv. Akad. Nauk. SSSR. Ser. Mat., textbf{45} (1981), 3-22 (in Russian); Math. USSR-Izv., textbf{18} (1982), 1--17 (in English).

bibitem{AD1} A. Aziz and Q. M. Dawood, textit{Inequalities for a polynomial and its derivative}, J. Approx. Theory, textbf{54} (1988), 306-313.

bibitem{Azi3} A. Aziz and N. A. Rather, textit{Some compact generalizations of Zygmund-type inequalities for polynomials}, Nonlinear Studies, textbf{6}(1999), 241--255.

bibitem{AS} A. Aziz and W. M. Shah,textit{ $L^p$ inequalities for polynomials with restricted zeros,} Glasnik Matematiki, textbf{57}(2002), 73--81.

bibitem{Ber} S. Bernstein, Sur la limitation des d'eriv'{e}es des polynomes,~textit{C. R. Acad. Sci. Paris.,}

textbf{190}(1930), ~338-340.

bibitem{BR1} R. P. Boas Jr. and Q. I. Rahman, textit{$L^{p}$ inequalities for polynomials and entire functions}, Arch. Rational Mech. Anal., textbf{11} (1962), 34--39.

bibitem{Bru1} N. G. de Bruijn, textit{Inequalities concerning polynomials in the complex domain}, Neder. Akad. Wetensch. Proc., textbf{50} (1947), 1265--1272.

bibitem{GSL} N. K. Govil, A. Liman and W. M. Shah, textit{Some inequalities concerning derivative and maximum modulus of polynomials,}

~textit{Aust. J. Math. Anal. Appl.,}~textbf{8}(2011),~1--8.

bibitem{Har1} G.H.Hardy, textit{The mean value of the modulus of an analytic function,} Proc. London. Math. Soc., textbf{14} (1915), 269--277.

bibitem{Lax1} P. D. Lax, textit{Proof of a conjecture of P. Erd"{o}s on the derivative of a polynomial}, Bull. Amer. Math. Soc., textbf{50} (1944), 509--513.

bibitem{Mar1} M. Marden, Geometry of polynomials, IInd Ed., Math. Surveys, No.3, Amer. Math. Pro., R.I., 1996.

bibitem{RS1} Q. I. Rahman and G. Schmeisser, textit{$L^{p}$ inequalities for polynomials}, J. Approx. Theory, textbf{53} (1988), 26--32.

bibitem{RS} Q. I. Rahman and G. Schmeisser, textit{Analytic Theory of Polynomials}. Oxford Univ. Press, 2002.

bibitem {WL} W. M. Shah, and A. Liman, textit{An operator preserving inequalities between polynomials}, J. Inequal. Pure Appl. Math., textbf{9} (2009), 1--12.

bibitem{sl} W. M. Shah and A. Liman, textit{Integral estimates for the family of B-operators}, Operators and Matrices, textbf{5}(2011)

--87.

bibitem{WSL} S. L. Wali, W. M. Shah and A. Liman, textit{Inequalities Concerning B-Operators}, Probl. Anal. Issues Anal. textbf{23}(5)(2016), 55–-72.

bibitem{Zyg} A. Zygmund, textit{A remark on conjugate series}, Proc. London~ Math. Soc., textbf{34}(2) (1932), 392--400.




DOI: http://dx.doi.org/10.24193/subbmath.2018.2.02

Refbacks

  • There are currently no refbacks.