Existence and topological structure of solution sets for φ-Laplacian impulsive stochastic differential systems

Authors

  • Tayeb Blouhi
  • Mohamed Ferhat University of oran usto departement of mathematics

DOI:

https://doi.org/10.24193/subbmath.2018.4.07

Keywords:

-Laplacian Stochastic dierential equation, Wiener process, impulsive dierential equations, Matrix convergent to zero, Generalized Banach space, Fixed point.

Abstract

In this article, we present results on the existence and the topological struc-
ture of the solution set for initial-value problems for the rst-order impulsive
dierential equation with innite Brownian motions are proved.The approach is
based nonlinear alternative Leary-Schauder type theorem in generalized Banach
spaces

Author Biography

  • Mohamed Ferhat, University of oran usto departement of mathematics
    Associate   professor departement of mathematics usto university oran

References

A. T. Bharucha-Reid, Random Integral Equations, Academic Press, New York,

......................................................................................

A. Viorel, Contributions to the Study of Nonlinear Evolution Equations, Ph.D.

...................................................................

thesis, Babes-Bolyai University Cluj-Napoca Department of Mathematics, 2011.

................................................................

A. Halanay and D. Wexler, Teoria Calitativa a sistemelor Impulsuri, (in Romanian),

.......................................................................

Editura Academiei Republicii Socialiste Rom^ania, Bucharest, 1968.

A. A. Novikov, The moment inequalities for stochastic integrals. (Russian) Teor.

..........................................................

Verojatnost. i Primenen., 16 (1971) 548-551.

A.M. Samoilenko and N.A. Perestyuk, Impulsive Dierential Equations, World

Scientic, Singapore, 1995.

......................................................................

A.I. Perov, On the Cauchy problem for a system of ordinary dierential equations,

Pviblizhen. Met. Reshen

......................................

Dier. Uvavn., 2, (1964), 115-134. (in Russian).

B. Davis, On the integrability of the martingale square function, Israel J. Math.

(1970) 187-190.

...............................................................................

B. ksendal, Stochastic Dierential Equations:An Introduction with Applications

(Fourth Edition) Springer-Verlag, Berlin, 1995.

................................................................................

C. Guilan and H. Kai, On a type of stochastic dierential equations driven by

Downloads

Published

2018-12-08

Issue

Section

Articles