Existence and topological structure of solution sets for φ-Laplacian impulsive stochastic differential systems
DOI:
https://doi.org/10.24193/subbmath.2018.4.07Keywords:
-Laplacian Stochastic dierential equation, Wiener process, impulsive dierential equations, Matrix convergent to zero, Generalized Banach space, Fixed point.Abstract
In this article, we present results on the existence and the topological struc-
ture of the solution set for initial-value problems for the rst-order impulsive
dierential equation with innite Brownian motions are proved.The approach is
based nonlinear alternative Leary-Schauder type theorem in generalized Banach
spaces
References
A. T. Bharucha-Reid, Random Integral Equations, Academic Press, New York,
......................................................................................
A. Viorel, Contributions to the Study of Nonlinear Evolution Equations, Ph.D.
...................................................................
thesis, Babes-Bolyai University Cluj-Napoca Department of Mathematics, 2011.
................................................................
A. Halanay and D. Wexler, Teoria Calitativa a sistemelor Impulsuri, (in Romanian),
.......................................................................
Editura Academiei Republicii Socialiste Rom^ania, Bucharest, 1968.
A. A. Novikov, The moment inequalities for stochastic integrals. (Russian) Teor.
..........................................................
Verojatnost. i Primenen., 16 (1971) 548-551.
A.M. Samoilenko and N.A. Perestyuk, Impulsive Dierential Equations, World
Scientic, Singapore, 1995.
......................................................................
A.I. Perov, On the Cauchy problem for a system of ordinary dierential equations,
Pviblizhen. Met. Reshen
......................................
Dier. Uvavn., 2, (1964), 115-134. (in Russian).
B. Davis, On the integrability of the martingale square function, Israel J. Math.
(1970) 187-190.
...............................................................................
B. ksendal, Stochastic Dierential Equations:An Introduction with Applications
(Fourth Edition) Springer-Verlag, Berlin, 1995.
................................................................................
C. Guilan and H. Kai, On a type of stochastic dierential equations driven by