Some new estimates for Fejer type inequalities in quantum analysis

Authors

  • Kamel Brahim
  • Latifa Riahi
  • Muhammad Uzair Awan Department of Mathematics, GC University , Faisalabad, Pakistan

DOI:

https://doi.org/10.24193/subbmath.2017.0005

Keywords:

Convex function, s-convex function, h-convex function, m-convex function, (s, m)- convex function, Riemann-type q-integral, q-Jackson integral.

Abstract

The objective of this paper is to derive some quantum estimates of Fejer type
inequalities which involve Riemann type of quantum integrals via some classes of convex functions. We also discuss some special cases which can be deduced from the main results
of this paper

Author Biography

  • Muhammad Uzair Awan, Department of Mathematics, GC University , Faisalabad, Pakistan
    Assistant Professor, Mathematics

References

W. W. Breckner, Stetigkeitsaussagen ¯ir eine Klasse verallgemeinerter konvexer funktionen in topologischen

linearen Raumen, Pupl. Inst. Math., 23, 13-20, (1978).

L. F¶ejer: Ä Uber die Fourierreihen II, Math. Naturwiss. Anz Ungar. Akad. Wiss., 24 (1906), 369-390. (in

Hungarian).

S.S Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167(1992)

-56.

H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48, 100-111, 1994.

F. H. Jackson, On a q-de¯nite integrals, Quarterly J. Pure Appl. Math. 41 (1910) 193203.

V.G. Mihe»san, A generalizations of the convexity, Seminar on Functional Equations, Approx. and Convex.

Cluj-Napoca(Romania)(1993).

M. A. Noor, K. I. Noor, M. U. Awan, Some Quantum estimates for Hermite-Hadamard inequalities, Appl.

Math. Comput., 251, 675-679 (2015).

M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math.

Comput., 269, 242-251, (2015).

M.A. Noor, K.I. Noor, M.U. Awan, Quantum analogues of Hermite-Hadamard type inequalities for gener-

alized convexity, in: N. Daras and M.T. Rassias (Ed.), Computation, Cryptography and Network Security

(2015).

P. M. Rajkovi¶c, M. S. Stankovi¶c, S. D. Marinkovi¶c, The zeros of polynomials orthogonal with respect to

q-integral on several intervals in the complex plane, Proceedings of The Fifth International Conference on

Geometry, Integrability and Quantization, 2003, Varna, Bulgaria (ed. I.M. Mladenov, A.C.Hirsshfeld), 178-

Sabrina Taf, Kamel Brahim and Latifa Riahi Some results for Hadamard-type inequalities in quantum

calculs Le matematiche, Vol. LXIX (2014)Fasc. II, pp. 243258, doi: 10.4418/2014.69.2.21

M. Z. Sarikaya, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ.

Comenianae Vol. LXXIX, 2(2010), pp. 265-272.

G.H. Toader, Some generalisations of the convexity, Proc. Colloq. Approx. Optim (1984) 329 338.

K.-L. Tseng, S.-R. Hwang and S.S. Dragomir On some new inequalities of Hermite-Hadamard-Fejer type

involving convex functions, Demonstratio Math., XL(1) (2007), 51-64.

S. Varo·sanec, On h-convexity, J. Math. Anal. Appl., Volume 326, Issue 1, 303-311, 2007.

G. S. Yang and K. L. Tseng, A note On Hadamard's inequality, Tamkang. J. Math., 28(1997) 33-37.

G. S. Yang and K. L. Tseng, On certain integral inequalities related to HermiteHadamard inequalites, J.

Math. Anal. Appll, 239(1999) 180-187.

Downloads

Published

2017-03-04

Issue

Section

Articles