Certain sufficient conditions for starlikeness and convexity using a multiplier transformation
Abstract
involving a multiplier transformation. Selecting different dominants to
our main result, we obtain certain sufficient conditions for starlikeness
and convexity of analytic functions. In particular, we obtain the sufficient
conditions for parabolic starlikeness and uniform convexity. Some
known results appear as particular cases of our main result.
Keywords
Full Text:
PDFReferences
Aghalary, R., Ali, R. M., Joshi, S. B. and Ravichandran, V., Inequalities for analytic functions defined by certain linear operators, International J. Math. Sci. 4(2) (2005), 267-274 .
Billing, S. S., Certain differential subordination involving a multiplier transformation, Scientia Magna, 8(1) (2012), 87-93.
Billing, S. S., Differential inequalities implying starlikeness and convexity, Acta Universitatis Matthiae. Belii, series Mathematics, 20 (2012), 3-8.
Billing, S. S., A subordination theorem involving a multiplier transformation, Int. J. Ann and Appl, 1(2) (2013), 100-105.
Billing, S. S., A multiplier transformation and conditions for starlike and convex functions, Math. Sci. Res. J, 17(9) (2013), 239-244.
Billing, S. S., Differential inequalities and criteria for starlike and convex functions, Stud. Univ. Babes-Bolyai Math. Sci., 59(2) (2014), 191-198.
Cho, N. E. and Kim, T. H., Multiplier transformations and stronlgy close-to convex functions, Bull. Korean Math. Soc., 40 (2003), 399-410.
Cho, N. E. and Srivastava, H. M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37 (2003), 39-49.
Li, J. and Owa, S., Properties of the s˘al˘agean operator, Georgian Math. J., 5(4) (1998), 361-366.
Ma, W. C. and Minda, D., Uniformly convex functions, Ann. Polon. Math., 57(1992), no. 2, 165-175.
Miller, S. S. and Mocanu, P. T., Differential subordination: Theory and applications, Marcel Dekker, New York and Basel, (2000).
Owa, S., Shen, C. Y. and Obradovi˘c, M., Certain subcalsses of analytic functions, Tamkang J. Math., 20 (1989), 105-115.
Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1) (1993), 189-196.
S˘al˘agean, G. S., Subclasses of univalent functions, Lecture Notes in Math., Springer-Verlag, Heidelberg, 1013, (1983), 362-372.
Singh, S., Gupta, S. and Singh, S., On a class of multivalent functions defined by a multiplier transformation, Matematicki Vesnik, 60 (2008), 87-94.
Singh, S., Gupta, S. and Singh, S., On starlikeness and convexity of analytic functions satisfying a differential inequality, J. Inequal. Pure and Appl. Math., 9(3) (2008), Art. 81, 1-7.
Uralegaddi, B. A. and Somanatha, C., Certain classes of univalent functions, Current Topics in Analytic Function Theory, H. M. Srivastava and S. Owa (ed.), World Scientific, Singapore (1992) 371-374.
Kumar S. S. and Ravichandran V., Taneja H. C., Classes of multivalent
functions defined by Dziok-Srivastava linear operators, Kyungpook Math. J.,
(2006), 97-109.
Brar R. and Billing S. S., Certain sufficient conditions for parabolic starlike and uniformly close-to-convex functions, Stud Univ. Babes-Bolyai Math., 61(2016), No 1., 53-62.
DOI: http://dx.doi.org/10.24193/subbmath.2018.3.06
Refbacks
- There are currently no refbacks.