Radii of harmonic mapping with fixed second coefficients in the plane
Abstract
stable starlikness, stable convexity, fully starlikness and fully convexity of order $\alpha$ for these type of functions. All results are sharp.
Also these results generalize and improve some results in the literature
Keywords
Full Text:
PDFReferences
J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Shlodowska, sect. A textbf{59}(2) (1998), 57-66.
Press, Cambridge, 2004.
=========================================
J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. textbf{235}(2) (1999), 470-477.
=========================================
H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mapping, Bull. Amer. Math. Soc,
textbf{24}(10) (1936), 689-692.
=========================================
B. Y. Long and H. Hang, Radii of harmonic mapping in the plane, J. Aust. Math. Soc. (2016), 1-7.
=========================================
A. Gangadharan, V. Ravichandran and T.
N. Shanmugam, Radii of convexity and strong starlikeness for some classes of analytic functions. Journal of mathematical analysis and applications. textbf{211}(1) (1997), 301-313.
=========================================
R. Hernandez and M. J.Martín, Stable geometric properties of analytic and harmonic functions, Math. Pro. of the Cambridge Philosophical Soc. textbf{155} (2013), no. 02, 343-359.
DOI: http://dx.doi.org/10.24193/subbmath.2018.2.03
Refbacks
- There are currently no refbacks.