Fekete-Szego problem for a class of analytic functions defined by Carlson-Shaffer operator

Saurabh Porwal, Kaushal Kumar

Abstract


In the present paper, authors study a Fekete-Szeg\"{o} problem for a class of analytic functions defined by Carlson-Shaffer operator. Relevant connections of the results presented here with various known results are briefly indicated.

Keywords


Analytic Function, Fekete-Szeg\"{o} Problem, Carlson-Shaffer operator.

Full Text:

PDF

References


bibitem{1} M.H. Al-Abbadi and M. Darus, The Fekete-Szeg"{o} theorem for a certain class of analytic

functions, Sains Malaysiana, textbf{40}(4) (2011), 385-389.

bibitem{2} R.M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szeg"{o} coefficient

functional for transform of analytic functions, Bull. Iran. Math. Soc., textbf{35} (2) (2009), 119-

bibitem{3} D. Bansal, Fekete-Szeg"{o} problem for a new class of analytic functions, Int. J. Math. Math. Sci., (2011), Art. ID 143096, 1-5.

bibitem{4} B. Bhowmik, S. Ponnusamy and K.J. Wirths, On the Fekete-Szeg"{o} problem for concave univalent functions, J. Math. Anal. Appl., textbf{373}(2011), 432-438.

bibitem{5} B.C. Carlson and D. B. Shaffer, Starlike and Prestarlike hypergeometric functions, SIAM J. Math.

Anal., textbf{15} (1984), 737-745.

bibitem{6} N.E. Cho and S. Owa, On Fekete-Szeg"{o} problem for strongly $alpha$-Quasiconvex functions,

Tamkang J. Math., textbf{34}(1) (2003), 21-28.

bibitem{7} J.H. Choi, Y.C. Kim and T. Sugawa, A general approach to the Fekete-Szeg"{o}

problem, J. Math. Soc. Japan, textbf{59} (3) (2007), 707–727.

bibitem{8} M. Darus, T. N. Shanmugam and S. Sivasubramanian, Fekete-Szeg"{o} inequality for a

certain class of analytic functions, Mathematica, textbf{49} (72) (1) (2007), 29–34.

bibitem{10} M. Fekete and G. Szeg"{o}, Eine bemerkung uber ungerade schlichten funktionene, J. Lond.

Math. Soc., textbf{8}(1993), 85-89.

bibitem{11} F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic

functions, Proc. Amer. Math. Soc., textbf{20} (1969), 8-12.

bibitem{12} W. Koepf, On Fekete-Szeg"{o} problem for close-to-convex functions, Proc. Amer. Math. Soc.,

textbf{101}(1) (1987), 89-95.

bibitem{13} W. Koepf, On Fekete-Szeg"{o} problem for close-to-convex functions II, Archiv der

Mathematik, textbf{49}(5) (1987), 420-433.

bibitem{14} J.L. Li, On some classes of analytic functions, Math. Japon., textbf{40}(3) (1994), 523-529.

bibitem{15} R.J. Libera and E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with

derivative in $rho$, Proc. Amer. Math. Soc., textbf{87}(2) (1983), 251-257.

bibitem{16} R.R. London, Fekete-Szeg"{o} inequalities for close-to-convex functions, Proc. Amer. Math.

Soc., textbf{117}(4) (1993), 947-950.

bibitem{18} G. Murugusundaramoorthy, S. Kavitha and Thomas Rosy, On the Fekete-Szeg"{o} problem for

some subclasses of analytic functions defined by convolution, Proc. Pakistan Acad. Sci.,

textbf{44}(4) (2007), 249-254.

bibitem{19} S. Ponnusamy, Neighbourhoods and Caratheodory functions, J. Anal., textbf{4}(1996), 41-51.

bibitem{20} S. Ponnusamy and F. R{o}nning, Integral transform of a class of analytic functions, Complex

Var. Ellip. Equan., textbf{53}(5) (2008), 423-434.

bibitem{21} T.N. Shanmugan, M.P. Jeyaraman and S. Sivasubramanian, Fekete-Szeg"{o} functional

for some subclasses of analytic functions. Southeast Asian Bull. Math., textbf{32}

(2) (2008), 363–370.

bibitem{22} K. Al-Shaqsi and M. Darus, On the Fekete-Szeg"{o} problem for certain subclasses of analytic

functions, Appl. Math. Sci., textbf{2} (8) (2008), 431-441.

bibitem{23} A. Swaminathan, Sufficient conditions for hypergeometric functions to be in a certain class

of analytic functions, Computers Math. Appl., textbf{59}(4) (2010), 1578-1583.

bibitem{24} A. Swaminathan, Certain sufficiency conditions on Gaussian hypergeometric functions, J.

Inequal. Pure Appl. Math., textbf{5} (4) (2004), Art. 83.




DOI: http://dx.doi.org/10.24193/subbmath.2018.3.04

Refbacks

  • There are currently no refbacks.