Extended local convergence analysis of inexact Gauss-Newton method for singular systems of equations under weak conditions
Abstract
Keywords
Full Text:
PDFReferences
Amat, S., Busquier, S. and Guti'errez, J. M., Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., 157 (2003) 197--205.
Argyros, I. K., Computational theory of iterative methods, Studies in Computational Mathematics, 15, Editors: K. Chui and L. Wuytack. Elsevier (2007) New York, U.S.A
Argyros, I. K., Concerning the convergence of Newton's method and quadratic majorants, J. Appl. Math. Comput., 29 (2009) 391--400.
Argyros, I. K. and D. Gonz'{a}lez, Local convergence analysis of inexact Gauss-Newton method for singular systems of equations under majorant and center-majorant condition, SeMA, 69(1),(2015), 37--51.
Argyros, I. K. and Hilout, S., On the Gauss-Newton method, J. Appl. Math., (2010) 1--14.
Argyros, I. K. and Hilout, S., Extending the applicability of the Gauss-Newton method under average Lipschitz-conditions, Numer. Alg., 58 (2011) 23--52.
Argyros, I. K., A semilocal convergence analysis for directional Newton methods, Mathematics of Computation, AMS, 80 (2011) 327--343.
Argyros, I. K. and Hilout, S., On the solution of systems of equations with constant rank derivatives, Numer. Algor., 57 (2011) 235--253.
Argyros, I. K., Cho, Y. J. and Hilout, S., Numerical methods for equations and its applications, CRC Press/Taylor and Francis Group, New-York (2012).
Argyros, I. K. and Hilout, S., Improved local convergence of Newton's method under weaker majorant condition, J. Comput. Appl. Math., 236 (7) (2012) 1892--1902.
Argyros, I. K. and Hilout, S., Weaker conditions for the convergence of Newton's method, J. Complexity, 28 (2012) 364--387.
Hilout, S., Computational Methods in Nonlinear Analysis, World Scientific Publ. Comp., New Jersey (2013).
Ben-Israel, A. and Greville, T. N. E., Generalized inverses. CMS Books in Mathematics/Ouvrages de Mathematiques
de la SMC, 15. Springer-Verlag, New York, second edition, Theory and Applications (2003).
Burke, J. V. and Ferris, M. C., A Gauss-Newton method for convex composite optimization, Math. Programming Ser A., 71 (1995) 179--194.
Chen, J., The convergence analysis of inexact Gauss-Newton, Comput. Optim. Appl., 40 (2008) 97--118.
Chen, J. and Li, W., Convergence behaviour of inexact Newton methods under weak Lipschitz condition, J. Comput. Appl. Math., 191 (2006) 143--164.
Dedieu, J. P. and Kim, M. H., Newton's method for analytic systems of equations with constant rank derivatives, J. Complexity, 18 (2002) 187--209.
Dedieu, J. P. and Shub, M., Newton's method for overdetermined systems of equations, Math. Comput., 69 (2000) 1099--1115.
Dembo R. S., Eisenstat, S. C. and Steihaug, T., Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982) 400--408.
Deuflhard, P. and Heindl, G., Affine invariant convergence theorems for Newton's method and extensions to related methods, SIAM J. Numer. Anal., 16 (1979) 1--10.
Ferreira, O. P., Local convergence of Newton's method in Banach space from the viewpoint of the majorant principle, IMA J. Numer. Anal., 29 (2009) 746--759.
Ferreira, O. P., Local convergence of Newton's method under majorant condition, J. Comput. Appl. Math., 235 (2011) 1515--1522.
Ferreira, O. P. and Gonc{c}alves, M. L. N., Local convergence analysis of inexact Newton-like methods under majorant condition, Comput. Optim. Appl., 48 (2011) 1--21.
Ferreira, O. P., Gonc{c}alves, M. L. N. and Oliveira, P. R., Local convergence analysis of the Gauss-Newton method under a majorant condition, J. Complexity, 27 (2011) 111--125.
Ferreira, O. P., Gonc{c}alves, M. L. N. and Oliveira, P. R., Local convergence analysis of inexact Gauss-Newton like method under majorant condition, J. Comput. Appl. Math., 236 (2012) 2487--2498.
Gonc{c}alves, M. L. N. and Oliveira, P. R., Convergence of the Gauss-Newton method for a special class of systems of equations under a majorant condition, Optimiz., (2013) http://dx.doi.org/10.1080/02331934.2013.778854.
H"{a}ussler, W. M., A Kantorovich-type convergence analysis for the Gauss-Newton method. Numer. Math. 48 (1986) 119--125.
Hiriart-Urruty, J. B. and Lemar'echal, C., Convex analysis and minimization algorithms (two volumes). I. Fundamentals. II. Advanced theory and bundle methods, 305 and 306, Springer--Verlag, Berlin (1993).
Kantorovich, L. V. and Akilov, G. P., Functional Analysis, Pergamon Press, Oxford (1982).
Li, C. and Ng, K. F., Majorizing functions and convergence of the Gauss-Newton method for convex composite optimization, SIAM J. Optim., 18, 2 (2007) 613--692.
Li, C., Hu, N. and Wang, J., Convergence behaviour of Gauss-Newton's method and extensions of Smale point estimate theory, J. Complexity, 26 (2010) 268--295.
Morini, B., Convergence behaviour of inexact Newton methods, Math. Compu., 68 (1999) 1605--1613.
Potra, F. A. and Pt'ak, V., Nondiscrete induction and iterative processes, Pitman, (1994).
Robinson, S. M., Extension of Newton's method to nonlinear functions with values in a cone, Numer. Math. 19 (1972) 341--347.
Rockafellar, R. T., Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, N. J. (1970).
Shub, M. and Smale, S., Complexity of B'ezout's theorem iv: Probability of success extensions, SIAM J. Numer. Anal., 33 (1996) 128--148.
Smale, S., Newton's method estimates from data at one point. The merging of disciplines: new directions in pure, applied, and computational mathematics (Laramie, Wyo., 1985), 185-196, Springer, New York (1986).
Wang, W., Convergence of Newton's method and uniqueness of the solution of equations in Banach space, IMA J. Numer. Anal., 20 (2000) 123--134.
Xu, X. and Li, C., Convergence of Newton's method for systems of equations with constant rank derivatives, J. Comput. Math., 25 (2007) 705--718.
Xu, X. and Li, C., Convergence criterion of Newton's method for singular systems with constant rank derivatives, J. Math. Anal. Appl., 345 (2008) 689--701.
Ypma, T. J., Local convergence of inexact Newton's methods, SIAM J. Numer. Anal., 21 (1984) 583--590.
Zhou, F., An analysis on local convergence of inexact Newton-Gauss method solving singular systems of equations, Sci. World J., (2014), Article ID 752673.
Zhou, F., On local convergence analysis of inexact Newton method for singular systems of equations under majorant condition. The Scientific World Journal, 2014 (2014), Article ID 498016.
DOI: http://dx.doi.org/10.24193/subbmath.2017.4.11
Refbacks
- There are currently no refbacks.