Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces
Abstract
Keywords
Full Text:
PDFReferences
bibitem{AgBeHa2}R. P Agarwal, M. Benchohra, and S. Hamani,
A survey on existence results for boundary value problems
for nonlinear fractional differential equations and inclusions, {em Acta Applicandae Math.} {bf 109} (2010), 973--1033.
bibitem{AgBeSe} R. P. Agarwal, M. Benchohra, and D. Seba, An the application of measure of noncompactness to the existence of solutions for fractional differential equations, {em Results Math.} {bf 55 } (2009), 221--230.
bibitem{AgMeOr} R. P. Agarwal, M. Meehan, and D. O'Regan, {it Fixed Point Theory and Applications}, Cambridge Tracts in Mathematics {bf 141}, Cambridge University Press, Cambridge, 2001.
bibitem{AhNt} B. Ahmed and S. K. Ntouyas, Initial value problems for hybrid Hadamard
fractional equations, {em Electron. J. Differential Equations} {bf 2014} (2014), No. 161, pp. 1--8.
bibitem{AkKaPaRoSa} R. R. Akhmerov, M. I. Kamenski, A. S. Patapov, A. E. Rodkina, and B. N. Sadovski, {it Measures of Noncompactness and Condensing Operators} (Translated from the 1986 Russian original by A. Iacop), Operator theory: Advances and Applications, {bf 55}, Birkh"auser Verlag, Bassel, 1992.
bibitem{AuCe} J. P. Aubin and A. Cellina, {em Differential
Inclusions}, Springer-Verlag, Berlin-Heidelberg, New York, 1984.
bibitem{AuFr} J. P. Aubin and H. Frankowska, {em Set-Valued Analysis},
Birkhauser, Boston, 1990.
bibitem{BaGo} J. Banas and K. Goebel, {it Measure of Noncompactness in Banach Spaces}, Lecture Notes in Pure and Applied Mathematics,
Vol. {bf 60}, Dekker, New York.
bibitem{BaSa} J. Banas and K. Sadarangani, On some measures of noncompactness in the space of continuous functions, {em Nonlinear Anal.} {bf 60} (2008), 377--383.
bibitem{BeHaNt} M. Benchohra, S. Hamani, and S. K. Ntouyas,
Boundary value problems for differential equations with fractional
order, {em Surv. Math. Appl.} {bf 3} (2008), 1--12.
bibitem{BeHeSe1} M. Benchohra, J. Henderson, and D. Seba,
Measure of noncompactness and fractional differential equations
in Banach spaces, {em Commun. Appl. Anal.} {bf 12} (2008), 419--428.
bibitem{BeHeSe} M. Benchohra, J. Henderson, and D. Seba,
Boundary value problems for fractional differential inclusions
in Banach Space, {em Fract. Differ. Calc.} {bf 2} (2012), 99--108.
bibitem{BeNiSe} M. Benchohra, J. J. Nieto, and D. Seba,
Measure of noncompactness and fractional and hyperbolic partial fractional
differential equations in Banach space, {em Panamer. Math. J } {bf 20} (2010), 27--37.
bibitem{HG1} W. Benhamida, J. R. Graef, and S. Hamani,
Boundary value problems for fractional differential equations with integral and anti-periodic conditions in a Banach space, to appear.
bibitem{BuKiTr} P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, Composition
of Hadamard-type fractional integration operators and the semigroup
property, {em J. Math. Anal. Appl.} {bf 269} (2002), 387--400.
bibitem{BuKiTr1} P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, {em J. Math. Anal. Appl.} {bf 269} (2002), 1--27.
bibitem{BuKiTr2} P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, {em J. Math. Anal. Appl.} {bf 270} (2002), 1--15.
bibitem{By} L. Byszewski, Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, {em J. Math. Anal. Appl.} {bf 162} (1991), 494--505.
bibitem{By1} L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal
Cauchy problem, in: {em Selected Problems of Mathematics,} 25-30, 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow Univ. Technol., Krakw, 1995.
bibitem{CaVa} C. Castaing and M. Valadier, {em Convex Analysis
and Measurable Multifunctions}, Lecture Notes in Mathematics {bf
}, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
bibitem{De} K. Deimling, {em Multivalued Differential Equations},
De Gruyter, Berlin-New York, 1992.
bibitem{GuLaLi} D. Guo, V. Lakshmikantham, and X. Liu, Nonlinear integral equations in abstract spaces, {em Mathematics and its Applications}, {bf 373}, Kluwer, Dordrecht, 1996.
bibitem{Ha} J. Hadamard, Essai sur l'etude des fonctions donnees par leur development de Taylor, {em J. Mat. Pure Appl.} Ser. 8 (1892), 101--186.
bibitem {HaBeGr} S. Hamani, M. Benchohra, and J. R. Graef,
Existence results for boundary-value problems with nonlinear
fractional differential inclusions and integral conditions,
{em Electron. J. Differential Equations} {bf 10} (2010), No. 20, pp. 1--16.
bibitem{He} H. P. Heinz, On the behavior of measure of
noncompactness with respect of differentiation and integration
of vector-valued function, {em Nonlinear. Anal} {bf 7} (1983),
--1371.
bibitem{Hil} R. Hilfer, {em Applications of Fractional Calculus in
Physics}, World Scientific, Singapore, 2000.
bibitem{KiMa} A. A. Kilbas and S. A. Marzan, Nonlinear
differential equations with the Caputo fractional derivative in the
space of continuously differentiable functions, {em Differential
Equations} {bf 41} (2005), 84--89.
bibitem{KST} A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,
{em Theory and Applications of Fractional Differential Equations}.
North-Holland Mathematics Studies, {bf 204}, Elsevier,
Amsterdam, 2006.
bibitem {LaLe} V. Lakshmikantham and S. Leela, {it Nonlinear Differential Equations in Abstract Spaces}, International Series in Mathematics: Theory, Methods and Applications, {bf 2}, Pergamon Press, Oxford, 1981.
bibitem{LaOp} A. Lasota and Z. Opial, An application of the
Kakutani-Ky Fan theorem in the theory of ordinary
differential equation, {em Bull. Accd. Pol. Sci. Ser. Sci. Math.
Astronom. Phys.} {bf 13} (1965), 781--786.
bibitem{MoHaAl} S. M. Momani, S. B. Hadid, and Z. M.
Alawenh, Some analytical properties of solutions of diifferential
equations of noninteger order, {em Int. J. Math. Math. Sci.} {bf
} (2004), 697--701.
bibitem{Mo} H. M"{o}nch, Boundary value problem for nonlinear
ordinary differential equations of second order in Banach spaces,
{em Nonlinear Anal.} {bf 75} (1980), 985--999.
bibitem{OrPr} D. O'Regan and R. Precup, Fixed point theorems for
set-valued maps and existence principles for integral inclusions,
{em J. Math. Anal. Appl.} {bf 245} (2000), 594--612.
bibitem{Pod} I. Podlubny, {em Fractional Differential Equation}, Academic Press, San Diego, 1999.
bibitem{Sz} S. Szufla, On the application of measure of
noncompactness to existence theorems, {em Rend. Semin. Mat. Univ. Padova} {bf 75} (1986), 1--14.
bibitem{ThNtTa} P. Thiramanus, S. K. Ntouyas, and J. Tariboon, Existence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions,
{em Abstr. Appl. Anal.} (2014), Art. ID 902054, 9 pp.
end{thebibliography}
DOI: http://dx.doi.org/10.24193/subbmath.2017.4.02
Refbacks
- There are currently no refbacks.