Some comments on a linear programming problem

Marcel Bogdan

Abstract


Besides the very known two exits of the Simplex Algorithm we
consider two more cases when at least a solution exists and to
decide whether or not the solution is unique. This situation
occurred in a linear programming problem, on one hand applying the
Simplex Algorithm and on the other hand using Matlab command {\it
linprog}, that led to the case of unbounded solution set and its
construction. Some necessary conditions on data are given so that
the set of solutions to be boundedless.


Keywords


linear programming; simplex algorithm; multiple solutions

Full Text:

PDF

References


bibitem{Breckner1} Breckner, E.B., textit{De la poliedre la jocuri matriceale}, Editura Fundac tiei pentru Studii Europene,

Cluj-Napoca, 2007.

bibitem{Breckner2} Breckner, E.B., Popovici, N., emph{Probleme de cercetare operac{t}ionalu{a}}, Editura

Fundac tiei pentru Studii Europene, Cluj-Napoca, 2006.

bibitem{Breckner3} Breckner, W.W., textit{Cercetu{a}ri operac{t}ionale}, curs

litografiat, Cluj-Napoca, 1974.

bibitem{Dantzig1} Dantzig, G.B., textit{Linear Programming and Extensions}, Princeton University Press, 1963.

bibitem{Dantzig2} Dantzig, G.B., textit{Linear Programming}, Oper. Res. textbf{50}(2002), no. 1, 42-47.

bibitem{Griffin1} Griffin, C., Linear Programming: Penn State Math 484

Lecture Notes, 2009-2014,

http://www.personal.psu.edu/cxg286/Math484$_{-}V1$.pdf

bibitem{Robere1} Robere, R., Interior Point Methods and Linear

Programming,

http://www.cs.toronto.edu/~robere/paper/interiorpoint.pdf

bibitem{e} Excell, http://www.solver.com/excel-solver-linear-programming

bibitem{m} Matlab, http://www.mathworks.com/help/optim/ug/linprog.html

bibitem{o} Octave, http://www.obihiro.ac.jp/~suzukim/masuda/octave/html3/octave$_{-}125$.html

bibitem{oo} Octave, http://octave-online.net/




DOI: http://dx.doi.org/10.24193/subbmath.2018.2.10

Refbacks

  • There are currently no refbacks.