New subclasses of univalent functions on the unit disc in \(\mathbb{C}\)
Abstract
Keywords
Full Text:
PDFReferences
Alexander, J.W., textit{Functions which map the interior of the unit circle upon simple regions}, Ann. of Math., textbf{17} (1915), 12--22.
Duren, P.L., textit{Univalent Functions}, Springer Verlag, New York, 1983.
Goodman, A.W., textit{Univalent Functions}, Mariner Publ. Comp., Tampa, Florida, 1984.
Graham, I., Kohr, G., textit{Geometric Function Theory in One and Higher Dimensions}, Marcel Deker Inc., New York, 2003.
Graham, I., Kohr, G., textit{An Extension Theorem and Subclasses of Univalent Mappings in Several Complex Variables}, Complex Variables Theory Appl., textbf{47} (2002), 59--72.
Grigoriciuc, E.c S., textit{On some classes of holomorphic functions whose derivatives have positive real part}, Stud. Univ. Babec s-Bolyai Math., textbf{66} (2021), no. 3, 479--490.
Grigoriciuc, E.c S., textit{Some general distortion results for $K(alpha)$ and $S^*(alpha)$}, Mathematica (Cluj), textbf{64}(87) (2022), 222--232.
Grigoriciuc, E.c S., textit{New subclasses of univalent mappings in several complex variables. Extension operators and applications}, Comput. Methods Funct. Theory, textbf{23}(3) (2023), 533--555.
Kohr, G., textit{Basic Topics in Holomorphic Functions of Several Complex Variables}. Cluj University Press, Cluj-Napoca, 2003.
Kohr, G., Mocanu, P.T., textit{Special Topics of Complex Analysis (in romanian)}. Cluj University Press, Cluj-Napoca, 2003.
Krishna, D.V., RamReddy, T., textit{Coefficient inequality for a function whose derivative has a positive real part of order $alpha$}, Math. Boem., textbf{140} (2015), 43--52.
Krishna, D.V., Venkateswarlu, B., RamReddy, T., textit{Third Hankel determinant for bounded turning functions of order alpha}, J. Nigerian Math. Soc., textbf{34} (2015), 121--127.
MacGregor, T.H., textit{Functions whose derivative has a positive real part}, Trans. Amer. Math. Soc., textbf{104} (1962), 532--537.
Merkes, E.P., Robertson, M.S., Scott, W.T., textit{On products of starlike functions}, Proc. Amer. Math. Soc., textbf{13} (1962), 960--964.
Mocanu, P.T., textit{About the radius of starlikeness of the exponential function}, Stud. Univ. Babec s-Bolyai Math. Phys., textbf{14} (1969), no. 1, 35--40.
Mocanu, P.T., Bulboacu a, T., Su alu agean, G.c S., textit{Teoria geometricu a a funcc tiilor univalente}, Casa Cu arc tii de c Stiinc tu a, Cluj-Napoca, 2006 (in romanian).
Robertson, M.S., textit{On the theory of univalent functions}, Ann. Math., textbf{37} (1936), 374--408.
Su alu agean, G.c S., textit{Subclasses of univalent functions}, Lecture Notes in Math., textbf{1013} (1983), Springer Verlag, Berlin, 362--372.
Sheil-Small, T., textit{On convex univalent functions}, J. London Math. Soc., textbf{1} (1969), 483--492.
Suffridge, T.J., textit{Some remarks on convex maps of the unit disc}, Duke Math. J., textbf{37} (1970), 775--777.
DOI: http://dx.doi.org/10.24193/subbmath.2024.4.05
Refbacks
- There are currently no refbacks.