New subclasses of univalent functions on the unit disc in \(\mathbb{C}\)

Eduard Ștefan Grigoriciuc

Abstract


In this paper we consider a differential operator \(\mathcal{G}_k\) defined on the family of holomorphic normalized functions \(\mathcal{H}_0(\mathbb{U})\) that can be used in the construction of new subclasses of univalent functions on the unit disc \(\mathbb{U}\). These new subclasses are closely related to the families of convex, respectively starlike functions on \(\mathbb{U}\). We study general results related to these new subclasses, such as growth and distortion theorems, coefficients estimates and duality results. We also present examples of functions that belongs to the subclasses defined.

Keywords


Univalent function; convex function; starlike function; differential operator

Full Text:

PDF

References


Alexander, J.W., textit{Functions which map the interior of the unit circle upon simple regions}, Ann. of Math., textbf{17} (1915), 12--22.

Duren, P.L., textit{Univalent Functions}, Springer Verlag, New York, 1983.

Goodman, A.W., textit{Univalent Functions}, Mariner Publ. Comp., Tampa, Florida, 1984.

Graham, I., Kohr, G., textit{Geometric Function Theory in One and Higher Dimensions}, Marcel Deker Inc., New York, 2003.

Graham, I., Kohr, G., textit{An Extension Theorem and Subclasses of Univalent Mappings in Several Complex Variables}, Complex Variables Theory Appl., textbf{47} (2002), 59--72.

Grigoriciuc, E.c S., textit{On some classes of holomorphic functions whose derivatives have positive real part}, Stud. Univ. Babec s-Bolyai Math., textbf{66} (2021), no. 3, 479--490.

Grigoriciuc, E.c S., textit{Some general distortion results for $K(alpha)$ and $S^*(alpha)$}, Mathematica (Cluj), textbf{64}(87) (2022), 222--232.

Grigoriciuc, E.c S., textit{New subclasses of univalent mappings in several complex variables. Extension operators and applications}, Comput. Methods Funct. Theory, textbf{23}(3) (2023), 533--555.

Kohr, G., textit{Basic Topics in Holomorphic Functions of Several Complex Variables}. Cluj University Press, Cluj-Napoca, 2003.

Kohr, G., Mocanu, P.T., textit{Special Topics of Complex Analysis (in romanian)}. Cluj University Press, Cluj-Napoca, 2003.

Krishna, D.V., RamReddy, T., textit{Coefficient inequality for a function whose derivative has a positive real part of order $alpha$}, Math. Boem., textbf{140} (2015), 43--52.

Krishna, D.V., Venkateswarlu, B., RamReddy, T., textit{Third Hankel determinant for bounded turning functions of order alpha}, J. Nigerian Math. Soc., textbf{34} (2015), 121--127.

MacGregor, T.H., textit{Functions whose derivative has a positive real part}, Trans. Amer. Math. Soc., textbf{104} (1962), 532--537.

Merkes, E.P., Robertson, M.S., Scott, W.T., textit{On products of starlike functions}, Proc. Amer. Math. Soc., textbf{13} (1962), 960--964.

Mocanu, P.T., textit{About the radius of starlikeness of the exponential function}, Stud. Univ. Babec s-Bolyai Math. Phys., textbf{14} (1969), no. 1, 35--40.

Mocanu, P.T., Bulboacu a, T., Su alu agean, G.c S., textit{Teoria geometricu a a funcc tiilor univalente}, Casa Cu arc tii de c Stiinc tu a, Cluj-Napoca, 2006 (in romanian).

Robertson, M.S., textit{On the theory of univalent functions}, Ann. Math., textbf{37} (1936), 374--408.

Su alu agean, G.c S., textit{Subclasses of univalent functions}, Lecture Notes in Math., textbf{1013} (1983), Springer Verlag, Berlin, 362--372.

Sheil-Small, T., textit{On convex univalent functions}, J. London Math. Soc., textbf{1} (1969), 483--492.

Suffridge, T.J., textit{Some remarks on convex maps of the unit disc}, Duke Math. J., textbf{37} (1970), 775--777.




DOI: http://dx.doi.org/10.24193/subbmath.2024.4.05

Refbacks

  • There are currently no refbacks.