Overiteration of d-variate tensor product Bernstein operators: a quantitative result

Ana-Maria Acu, Heiner Gonska

Abstract


Extending an earlier estimate for the degree of approximation of overiterated univariate Bernstein operators towards the same operator of degree one, it is shown that an analogous result holds in the d-variate case. The method employed can be carried over to many other cases and is not restricted to Bernstein-type or similar methods.


Keywords


positive linear operators; Bernstein operators; second order moduli; d-variate approximation; tensor product approximation; product of parametric extensions

Full Text:

PDF

References


Agratini, O., Rus, I., Iterates of a class of discrete linear operators via contraction

principle, Commentat. Math. Univ. Carol., 44(2003), no. 3, 555-563.

Agratini, O., Rus, I., Iterates of some bivariate approximation process via weakly Picard

operators, Nonlinear Anal. Forum, 8(2003), no. 2 , 159-168.

Albu, M., Asupra convergent ei iteratelor unor operatori liniari si m arginit i, Sem. Itin.

Ec. Fun. Approx. Convex., Cluj-Napoca, (1979), 6-16.

Gonska, H., Quantitative Aussagen zur Approximation durch positive lineare Operatoren,

Dissertation, Universitat Duisburg 1979.

Gonska, H., Products of parametric extensions: Re ned estimates, In: Proc. 2nd Int.

Conf. on "Symmetry and Antisymmetry" in Mathematics, Formal Languages and Computer

Science (ed. by G.V. Orman and D. Bocu), 1-15. Brasov, Editura Universit at ii

"Transilvania", 2000.

Gonska, H., Kacs o, D., Pitul, P., The degree of convergence of over-iterated positive

linear operators, J. of Applied Functional Analysis, 1(2006), 403-423.

Gonska, H., Kovacheva, R., The second order modulus revisited: Remarks, applications,

problems, Confer. Sem. Mat. Univ. Bari, 257(1994), 1-32.

Jachymski, J., Convergence of iterates of linear operators and the Kelisky-Rivlin type

theorems, Studia Math., 195(2009), no. 2, 99-112.

Karlin, S., Ziegler, Z., Iteration of positive approximation operators, J. Approx. Theory,

(1970), 310-339.

Kelisky, R.P. Rivlin, T.J., Iterates of Bernstein polynomials, Paci c J. Math., 21(1967),

-520.

Nagel, J., Satze Korovkinschen Typs fur die Approximation linearer positiver Operatoren,

Dissertation, Universitat Essen, 1978.

Popoviciu, T., Problem posed on Dec. 6, In: Caietul de Probleme al Catedrei de analiz a,

(1955), no. 58.

Precup, R., On the iterates of uni- and multidimensional operators, Bull. Transilv. Univ.

Bra sov Ser. III. Math. Comput. Sci., 3(65)(2023), No. 2, 143-152.

Rus, I.A., Iterates of Bernstein operators, via contraction principle, J. Math. Anal.

Appl., 292(2004), 259-261.

Sikkema, P.C., Uber Potenzen von verallgemeinerten Bernstein-Operatoren, Mathematica,

Cluj, 8(31)(1966), 173-180.

Wenz, H.-J., On the limits of (linear combinations of ) iterates of linear operators, J.

Approx. Theory, 89(1997), no. 2, 219-237.

Wikipedia (German), https://de.wikipedia.org/wiki/Hyperwurfel (Jan. 19, 2024).

Zhuk, V.V., Functions of the Lip 1 class and S. N. Bernstein's polynomials (Russian),

Vestn. Leningr. Univ., Math., 22 (1989), no. 1, 38-44; translation of Vestn. Leningr.

Univ., Ser. I(1989), no. 1, 25-30.




DOI: http://dx.doi.org/10.24193/subbmath.2024.4.13

Refbacks

  • There are currently no refbacks.