An existence theorem for a non-autonomous second order nonlocal multivalued problem
Abstract
Keywords
Full Text:
PDFReferences
Ambrosetti, A., Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova, 39 (1967), 349-360.
Bungardi, S., Cardinali, T., Rubbioni, P., Semilinear nonlocal integrodifferential inclusions via vectorial measures of noncompactness. In press on Appl. Anal. (2016), http://dx.doi.org/10.1080/00036811.2016.1227969.
Couchouron, J.F., Kamenski, M., An abstract topological point of view averaging principle in th theory of differential inclusions, Nonlinear Analysis, 42 (2000), 1101-1129.
Cardinali, T., Rubbioni, P., On the existence of mild solutions of semilinear evolution differential inclusions, J. Math. Anal. Appl., 308 (2005), No. 2, 620-635.
Denkowski, Z., Migorski, S., Papageorgiou, N.S., An Introduction to Nonlinear Analysis, Theory, Kluwer Acad. Publ. Boston/Dordrecht/London (2003).
Fattorini, H.O., Second Order Linear Differential Equations in Banach Spaces, North-Holland Publishing Co., Amsterdam (1985).
Henriquez, H.R., Existence of solutions of non-autonomous second order differential equations with infinite delay, Nonlinear Anal. 74 (10), (2011), 3333-3352.
Henriquez, H.R., Poblete, V., Pozo, J.C., Mild solutions of nonautonomous
second order problems with nonlocal initial conditions, J. Math. Anal. Appl.,
(2014), 1064-1083.
Kozak, M., A fundamental solution of a second-order differential equation in Banach space, Univ. Iagel. Acta Math. 32 ( 1995), 275-289.
Kamenskii, M., Obukhovskii, V., Zecca, P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl. 7, Walter de Gruyter, Berlin (2001).
Kisynski, J., On cosine operator functions and one-parameter groups of operators, Studia Math. 44 (1972) 93-105.
Serizawa, H., Watanabe, M., Time-dependent perturbation for cosine families in Banach spaces, J. Math. 12, Houston, (1986), 579-586.
Travis, C.C., Webb., G.F., Second order differential equations in Banach space, Nonlinear Equations in Abstract Spaces, Academic Press, New York (1978).
Vasilev, V.V., Piskarev, S.I., Differential equations in Banach spaces, II, Theory of cosine operator functions, J. Math. Sci. (N.Y.) 122 (2004) 7047-7060.
Zvyagin, V., Obukhovskii, V., Zvyagin, A., On inclusions with multivalued operators and their applications to some optimization problem, J. Fixed Point Theory Appl. 16 (2014) 27-82.
DOI: http://dx.doi.org/10.24193/subbmath.2017.0008
Refbacks
- There are currently no refbacks.