Coincidence point theorems in some generalized metric spaces
Abstract
Keywords
Full Text:
PDFReferences
Berinde, V., Iterative Approximation of Fixed Points, Springer, 2007.
Berinde, V., Petru sel, A., Rus, I.A., Remarks on the terminology of the mappings in xed
point iterative methods, in metric spaces, Fixed Point Theory, 24(2023), no. 2, 525-540.
Blumenthal, L.M., Theory and Applications of Distance Geometry, Oxford, 1953.
Buic a, A., Principii de coincident a si aplicat ii, Presa Universitar a Clujean a, Cluj-
Napoca, 2001.
Filip, A.-D., Fixed Point Theory in Kasahara Spaces, Casa C art ii de S tiint a, Cluj-
Napoca, 2015.
Filip, A.-D., Conversion between generalized metric spaces and standard metric spaces
with applications in xed point theory, Carpathian J. Math., 37(2021), no. 2, 345-354.
Kirk, W.A., Sims, B., (eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001.
Petru sel, A., A generalization on Peetre-Rus theorem, Stud. Univ. Babe s-Bolyai Math.,
(1990), 81-85.
Petru sel, A., Rus, I.A., S erban, M.A., Basic problems of the metric xed point theory
and the relevance of a metric xed point theorem for a multivalued operator, J. Nonlinear
Convex Anal., 15(2014), 493-513.
Rus, I.A., Around metric coincidence point theory, Stud. Univ. Babe s-Bolyai Math.,
(2023), no. 2, 449-463.
Rus, I.A., Petru sel, A., Petru sel, G., Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca,
DOI: http://dx.doi.org/10.24193/subbmath.2023.4.18
Refbacks
- There are currently no refbacks.