Subclass of analytic functions on q-analogue connected with a new linear extended multiplier operator

Ekram E. Ali

Abstract


Using a new linear extended multiplier q-Choi-Saigo-Srivastava operator we define a subclass subordination and the newly defined q-analogue of the Choi-Saigo-Srivastava operator to the class of analytic functions. For this class, conclusions are drawn that include coefficient estimates, integral representation, linear combination, weighted and arithmetic means, and radius of starlikeness.

Full Text:

PDF

References


Aldweby, H., Darus, M.,

Some subordination results on $q$-analogue of Ruscheweyh differential

operator, Abstr. Appl. Anal., (2014), 958563, 6 pp.

Ali, E.E., Bulboaca, T.,

Subclasses of multivalent analytic functions associated with a $q$-difference operator,

Mathematics, {bf 8}(2020), 2184.

Ali, E.E., Lashin, A.M., Albalahi, A.M.,

Coefficient estimates

for some classes of bi-univalent function associated with Jackson $q$-difference

operator, J. Funct. Spaces, (2022), 2365918, 8 pp.

Ali, E.E., Oros, G.I., Shah, S.A., Albalahi, A.M.,

Applications of q-calculus multiplier operators and subordination for the

study of particular analytic function subclasses, Mathematics, {bf 11}(2023), 2705.

Al-Oboudi, F.M.,

On univalent functions defined by a generalized Su{a}lu{a}gean operator,

Internat. J. Math. Math Sci., {bf 27}(2004), 1429-1436.

Al-Oboudi, F.M., Al-Amoudi, K.A.,

On classes of analytic functions related to conic domain,

J. Math. Anal. Appl., {bf 339}(2008), 655-667.

Aouf, M.K., Mostafa, A.O., Elmorsy, R.E.,

Certain subclasses of analytic functions with varying arguments associated with $q$-difference

operator, Afr. Mat., {bf 32}(2021), 621--630.

Bulboacu{a}, T.,

Differential Subordinations and Superordinations. Recent Results,

House of Scientific Book Publ., Cluj-Napoca, 2005.

Cu{a}tac{s}, A.,

On certain classes of $p$-valent functions

defined by multiplier transformations, in Proceedings of the International

Symposium on Geometric Function Theory and Applications: GFTA 2007

Proceedings (Istanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatoc{g}

lu, Editors), pp. 241--250, TC Istanbul KH{u}ltH{u}r University

Publications, Vol. 91, TC Istanbul KH{u}ltH{u}r University, Istanbul,

Turkey, 2008.

Cho, N.E., Srivastava, H.M.,

Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math.

Comput. Model., {bf 37}(2003), 39--49.

El-Ashwah, R.M., Aouf, M.K., Shamandy, A., Ali, E.E.,

Subordination results for some subclasses of analytic functions,

Math. Bohem., {bf 136}(2011), 311--331.

Govindaraj, M., Sivasubramanian, S.,

On a class of analytic functions related to conic domains involving $q$-calculus,

Anal. Math., {bf 43}(2017), 475-487.

Jackson, F.H.,

On $q$-functions and a certain difference operator,

Trans. Roy. Soc. Edinburgh, {bf 46}(1908), 253--281.

Jackson, F.H.,

On $q$-definite integrals,

Quart., J. Pure Appl. Math., {bf 41}(1910), 193--203.

Jafari, M., Motamednezad, A., Adegani, E.A.,

Coefficient estimates for a subclass of analytic functions by Srivastava-Attiya

operator, Stud. Univ. Babes-Bolyai Math., {bf 67}(2022), 739-747.

Janowski, W.,

Some extremal problems for certain families of

analytic functions, Ann. Polon. Math., {bf 28}(1973), 297--326.

Kanas, S., Raducanu, D.,

Some class of analytic functions related to conic domains,

Math. Slovaca, {bf 64}(2014), 1183--1196.

Kota, W.Y., El-Ashwah, R.M.,

Some application of

subordination theorems associated with fractional $q$-calculus operator,

Math. Bohem., {bf 148}(2023), No. 2, 131-148.

Liu, M.-S.,

On a subclass of $p$-valent close to convex functions of type $alpha $ and order $beta $,

J. Math. Study, {bf 30}(1997), 102--104.

Mahmood, S., Sokol, J.,

New subclass of analytic functions in

conical domain associated with Ruscheweyh $q$-differential operator,

Results Math., {bf 71}(2017), 1--13.

Mason, T.E.,

On properties of the solution of linear $q$-difference equations with

entire function coefficients, Amer. J. Math.,

{bf 37}(1915), 439-444.

Miller, S.S., Mocanu, P.T.,

Differential subordinations and univalent functions, Michigan Math. J., {bf 28}(1981), 157-171.

Miller, S.S., Mocanu, P.T.,

Differential Subordinations:

Theory and Applications, Series on Monographs and Texbooks in Pure and

Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.

Mohammed, N.H., Cho, N.E., Adegani, E.A., Bulboaca, T.,

Geometric properties of normalized imaginary error function,

Stud. Univ. Babec{s}-Bolyai Math., {bf 67}(2022), 455-462.

Noor, K.I.,

On new classes of integral operator, J. Natur. Geom., {bf 16}(1999), 71--80.

Noor, K.I., Noor, M.A.,

On integral operators, J. Math. Anal. Appl., {bf 238}(1999), 341-352.

Su{a}lu{a}gean, G.S.,

Subclasses of univalent functions, in

Complex Analysis-Fifth Romanian-Finish Seminar, Part-I, Bucharest, 1981, in

Lecture notes in Math., Vol. 1013, Springer, Berlin, 1983, pp. 362-372.

Shareef, Z., Hussain, S., Darus, M.,

Convolution operator in geometric functions theory, J. Inequal. Appl., {bf 213}(2012), 1-11.

Srivastava, H.M., Khan, S., Ahmad, Q.Z., Khan, N., Hussain, S.,

The Faber polynomial expansion method and its application to the general

coefficient problem for some subclasses of bi-univalent functions associated

with a certain $q$-integral operator, Stud. Univ. Babec{s}-Bolyai Math.,

{bf 63}(2018), 419--436.

Wang, Z.G., Hussain, S., Naeem, M., Mahmood, T., Khan, S.,

A subclass of univalent functions associated with $q-$analogue of

Choi-Saigo-Srivastava operator, Hacet. J. Math. Stat.,

{bf XX}(x)(2019), 1--9.




DOI: http://dx.doi.org/10.24193/subbmath.2024.4.07

Refbacks

  • There are currently no refbacks.