Subclass of analytic functions on q-analogue connected with a new linear extended multiplier operator
Abstract
Full Text:
PDFReferences
Aldweby, H., Darus, M.,
Some subordination results on $q$-analogue of Ruscheweyh differential
operator, Abstr. Appl. Anal., (2014), 958563, 6 pp.
Ali, E.E., Bulboaca, T.,
Subclasses of multivalent analytic functions associated with a $q$-difference operator,
Mathematics, {bf 8}(2020), 2184.
Ali, E.E., Lashin, A.M., Albalahi, A.M.,
Coefficient estimates
for some classes of bi-univalent function associated with Jackson $q$-difference
operator, J. Funct. Spaces, (2022), 2365918, 8 pp.
Ali, E.E., Oros, G.I., Shah, S.A., Albalahi, A.M.,
Applications of q-calculus multiplier operators and subordination for the
study of particular analytic function subclasses, Mathematics, {bf 11}(2023), 2705.
Al-Oboudi, F.M.,
On univalent functions defined by a generalized Su{a}lu{a}gean operator,
Internat. J. Math. Math Sci., {bf 27}(2004), 1429-1436.
Al-Oboudi, F.M., Al-Amoudi, K.A.,
On classes of analytic functions related to conic domain,
J. Math. Anal. Appl., {bf 339}(2008), 655-667.
Aouf, M.K., Mostafa, A.O., Elmorsy, R.E.,
Certain subclasses of analytic functions with varying arguments associated with $q$-difference
operator, Afr. Mat., {bf 32}(2021), 621--630.
Bulboacu{a}, T.,
Differential Subordinations and Superordinations. Recent Results,
House of Scientific Book Publ., Cluj-Napoca, 2005.
Cu{a}tac{s}, A.,
On certain classes of $p$-valent functions
defined by multiplier transformations, in Proceedings of the International
Symposium on Geometric Function Theory and Applications: GFTA 2007
Proceedings (Istanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatoc{g}
lu, Editors), pp. 241--250, TC Istanbul KH{u}ltH{u}r University
Publications, Vol. 91, TC Istanbul KH{u}ltH{u}r University, Istanbul,
Turkey, 2008.
Cho, N.E., Srivastava, H.M.,
Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math.
Comput. Model., {bf 37}(2003), 39--49.
El-Ashwah, R.M., Aouf, M.K., Shamandy, A., Ali, E.E.,
Subordination results for some subclasses of analytic functions,
Math. Bohem., {bf 136}(2011), 311--331.
Govindaraj, M., Sivasubramanian, S.,
On a class of analytic functions related to conic domains involving $q$-calculus,
Anal. Math., {bf 43}(2017), 475-487.
Jackson, F.H.,
On $q$-functions and a certain difference operator,
Trans. Roy. Soc. Edinburgh, {bf 46}(1908), 253--281.
Jackson, F.H.,
On $q$-definite integrals,
Quart., J. Pure Appl. Math., {bf 41}(1910), 193--203.
Jafari, M., Motamednezad, A., Adegani, E.A.,
Coefficient estimates for a subclass of analytic functions by Srivastava-Attiya
operator, Stud. Univ. Babes-Bolyai Math., {bf 67}(2022), 739-747.
Janowski, W.,
Some extremal problems for certain families of
analytic functions, Ann. Polon. Math., {bf 28}(1973), 297--326.
Kanas, S., Raducanu, D.,
Some class of analytic functions related to conic domains,
Math. Slovaca, {bf 64}(2014), 1183--1196.
Kota, W.Y., El-Ashwah, R.M.,
Some application of
subordination theorems associated with fractional $q$-calculus operator,
Math. Bohem., {bf 148}(2023), No. 2, 131-148.
Liu, M.-S.,
On a subclass of $p$-valent close to convex functions of type $alpha $ and order $beta $,
J. Math. Study, {bf 30}(1997), 102--104.
Mahmood, S., Sokol, J.,
New subclass of analytic functions in
conical domain associated with Ruscheweyh $q$-differential operator,
Results Math., {bf 71}(2017), 1--13.
Mason, T.E.,
On properties of the solution of linear $q$-difference equations with
entire function coefficients, Amer. J. Math.,
{bf 37}(1915), 439-444.
Miller, S.S., Mocanu, P.T.,
Differential subordinations and univalent functions, Michigan Math. J., {bf 28}(1981), 157-171.
Miller, S.S., Mocanu, P.T.,
Differential Subordinations:
Theory and Applications, Series on Monographs and Texbooks in Pure and
Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.
Mohammed, N.H., Cho, N.E., Adegani, E.A., Bulboaca, T.,
Geometric properties of normalized imaginary error function,
Stud. Univ. Babec{s}-Bolyai Math., {bf 67}(2022), 455-462.
Noor, K.I.,
On new classes of integral operator, J. Natur. Geom., {bf 16}(1999), 71--80.
Noor, K.I., Noor, M.A.,
On integral operators, J. Math. Anal. Appl., {bf 238}(1999), 341-352.
Su{a}lu{a}gean, G.S.,
Subclasses of univalent functions, in
Complex Analysis-Fifth Romanian-Finish Seminar, Part-I, Bucharest, 1981, in
Lecture notes in Math., Vol. 1013, Springer, Berlin, 1983, pp. 362-372.
Shareef, Z., Hussain, S., Darus, M.,
Convolution operator in geometric functions theory, J. Inequal. Appl., {bf 213}(2012), 1-11.
Srivastava, H.M., Khan, S., Ahmad, Q.Z., Khan, N., Hussain, S.,
The Faber polynomial expansion method and its application to the general
coefficient problem for some subclasses of bi-univalent functions associated
with a certain $q$-integral operator, Stud. Univ. Babec{s}-Bolyai Math.,
{bf 63}(2018), 419--436.
Wang, Z.G., Hussain, S., Naeem, M., Mahmood, T., Khan, S.,
A subclass of univalent functions associated with $q-$analogue of
Choi-Saigo-Srivastava operator, Hacet. J. Math. Stat.,
{bf XX}(x)(2019), 1--9.
DOI: http://dx.doi.org/10.24193/subbmath.2024.4.07
Refbacks
- There are currently no refbacks.