The Pólya \(f\)-curvature of plane curves

Mircea Crasmareanu, Gabriel-Teodor Pripoae

Abstract


We introduce and study a new curvature function for plane curves inspired by the weighted mean curvature of M. Gromov. We call it Pólya, being the difference between the usual curvature and the inner product of the normal vector field with the Pólya vector field of a given planar function \(f\). We computed it for several examples, since the general problem of vanishing or constant values of this new curvature involves the general expression of \(f\).

Full Text:

PDF

References


Alexanderson, G.L., The Random Walks of George Polya, MAA Spectrum, Washington, DC, Mathematical Association of America (MAA), 2000.

Barbosa, E., Santana, F., Upadhyay, A., Hypersurfaces on shrinking gradient Ricci solitons, J. Math. Anal. Appl., 492(2020), no. 2, Article ID 124470, 18 p.

Braden, B., Polya's geometric picture of complex contour integrals, Math. Mag., 60(1987), 321-327.

Chou, K.S., Zhu, X.P., The Curve Shortening Problem, Boca Raton, FL, Chapman & Hall/CRC, 2001.

Crasmareanu, M., New tools in Finsler geometry: Stretch and Ricci solitons, Math. Rep., Bucharest, 16(66)(2014), no. 1, 83-93.

Crasmareanu, M., Para-mixed linear spaces, Acta Univ. Sapientiae Math., 9(2017), no. 2, 275-282.

Crasmareanu, M., Frigioiu, C., Unitary vector fields are Fermi-Walker transported along Rytov-Legendre curves, Int. J. Geom. Methods Mod. Phys., 12(10)(2015), Article ID 1550111, 9 pages.

Gromov, M., Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., 13(2003), no. 1, 178-215; erratum ibid., 18(2008), no. 5, 1786-1786.

Ionescu, L.M., Pripoae, C.L., Pripoae, G.T., Classification of holomorphic functions as Polya vector fields via differential geometry, Mathematics, 9(16)(2021), article no. 1890.

Klingenberg, W., A Course in Differential Geometry, Springer, 1978.

Mazur, B., Perturbations, deformations, and variations in geometry, physics, and number theory, Bull. Am. Math. Soc., New Ser., 41(3)(2004), 307-336.

Miron, R., Une generalisation de la notion de courbure de parall elisme, Gaz. Mat. Fiz., Bucure sti, Ser. A, 10(63)(1958), 705-708.

Miron, R., The Geometry of Myller Configurations. Applications to Theory of Surfaces and Nonholonomic Manifolds, Bucharest, Editura Academiei Romane, 2010.

Zhu, C.P., Lectures on Mean Curvature Flows, AMS/IP Studies in Advanced Mathematics, 32, Providence, RI, American Mathematical Society, 2002.




DOI: http://dx.doi.org/10.24193/subbmath.2024.1.14

Refbacks

  • There are currently no refbacks.