A compartmental model for COVID-19 to assess effects of non-pharmaceutical interventions with emphasis on contact-based quarantine
Abstract
Keywords
Full Text:
PDFReferences
A, M.M., Islam, M.H., Mamun, K.A., et al.(2020) Covid-19
transmission: Bangladesh perspective. Mathematics 8:1793. doi:
https://doi.org/10.3390/math8101793
Bangladesh: WHO coronavirus disease (covid-19) dashboard
with vaccination data. In: World Health Orga- nization.
https://covid19.who.int/region/searo/country/bd.
Barbarossa, M.V., Bogya, N., D´enes, A., et al(2021). Fleeing lockdown and its
impact on the size of epidemic outbreaks in the source and target regions –
A covid-19 lesson. Scientific Reports. doi: https://doi.org/10.1038/s41598-021-
-9
Barbarossa, M.V., Fuhrmann, J., Meinke, J.H., et al(2020) Modeling the spread
of covid-19 in Germany: Early assessment and possible scenarios. PLOS ONE.
doi: https://doi.org/10.1371/journal.pone.0238559
Byrne, A.W., McEvoy, D., Collins, A.B., et al.(2020) Inferred duration of infectious period of SARS-COV-2: Rapid scoping review and analysis of available
evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open. doi:
https://doi.org/10.1136/bmjopen-2020-039856
Cabinet Division. In:Cabinet Division Government of the Peoples Republic
of Bangladesh. https://cabinet.gov.bd/site/view/notices archieve. Accessed 22
May 2022
Chen, S.J., Wang, S.C., Chen,Y.C.(2020) Novel antiviral strategies in
the treatment of COVID-19: A Review. Microorganisms 8:1259. doi:
https://doi.org/10.3390/microorganisms8091259
Chen, T.M., Rui, J., Wang, QP. et al.(2020) A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty
, 24 . https://doi.org/10.1186/s40249-020-00640-3
Chen, Y-H, Fang, C-T, Huang, Y-L.(2021) Effect of non-lockdown social distancing and testing-contact tracing during a covid-19 outbreak in Daegu, South
Korea, February to April 2020: A modeling study. International Journal of Infectious Diseases 110:213–221. doi: https://doi.org/10.1016/j.ijid.2021.07.058
Cheng, C., Zhang, D.D., Dang, D., et al.(2021) The incubation period
of COVID-19: A global meta-analysis of 53 studies and a Chinese observation study of 11 545 patients. Infectious Diseases of Poverty. doi:
https://doi.org/10.1186/s40249-021-00901-9 M.F. RAJABOV: NUMERICAL
SOLUTION OF RLW ... 13
Coronavirus disease (covid-19): Vaccines. In: World Health Organization. https://www.who.int/news- room/q-a-detail/coronavirus-disease-(covid19)-vaccines?topicsurvey=v8kj13
Coronavirus cases: In: Worldometer.
https://www.worldometers.info/coronavirus/.
Worldometers, COVID- 19 pandemic update
Datta, S., Saratchand, C.(2021) Non-pharmaceutical interventions in a generalized model of interactive dynamics between COVID-19 and the economy.
Nonlinear Dynamics 105:2795–2810. doi: https://doi.org/10.1007/s11071-021-
-9
D´enes, A., Gumel, A.B(2019). Modeling the impact of quarantine during an
outbreak of ebola virus disease. Infectious Disease Modelling 4:12–27. doi:
https://doi.org/10.1016/j.idm.2019.01.003
Diekmann, O., Heesterbeek, J.A.(2009), Roberts MG The construction of nextgeneration matrices for compartmental epidemic models. Journal of The Royal
Society Interface 7:873–885. doi: https://doi.org/10.1098/rsif.2009.0386
Ferguson, N., Laydon, D., Nedjati Gilani, G., et al.(2020) Report 9: Impact of non-pharmaceutical interventions (npis) to reduce COVID19 mortality and healthcare demand. In: Spiral.
http://spiral.imperial.ac.uk/handle/10044/1/77482. 12 APPL. COMPUT.
MATH., V.XX, N.XX, 20XX
Fokas, A.S., Dikaios, N., Kastis, G.A.(2020) Mathematical models and deep
learning for predicting the num- ber of individuals reported to be infected
with SARS-COV-2. Journal of The Royal Society Interface 17:20200494. doi:
https://doi.org/10.1098/rsif.2020.0494
Gaudart, J., Landier, J., Huiart, L., et al.(2021) Factors associated
with the spatial heterogeneity of the first wave of covid-19 in France:
A nationwide geo-epidemiological study. The Lancet Public Health. doi:
https://doi.org/10.1016/s2468-2667(21)00006-2
Holshue, M.L., DeBolt ,C., Lindquist, S., et al.(2020) First case of 2019
novel coronavirus in the United States. New England Journal of Medicine
:929–936. doi: https://doi.org/10.1056/nejmoa2001191
Huo, X., Chen, J. & Ruan, S.(2021) Estimating asymptomatic, undetected and
total cases for the COVID-19 outbreak in Wuhan: a mathematical modeling
study. BMC Infect Dis 21, 476 .
Ibrahim, M.A., Al-Najafi, A.(2020) Modeling, control, and prediction of
the spread of COVID-19 using com- partmental, logistic, and Gauss
Models: A case study in Iraq and Egypt. Processes 8:1400. doi:
https://doi.org/10.3390/pr8111400
Ivorra, B., Ferr ´andez ,M.R., Vela-P ´erez, M., Ramos, A.M(2020). Mathematical modeling of the spread of the coronavirus disease 2019 (COVID19) taking into account the undetected infections. the case of China. Communications in Nonlinear Science and Numerical Simulation 88:105303. doi:
https://doi.org/10.1016/j.cnsns.2020.105303
Jin, Y.H., Cai,L., Cheng, Z.S., et al.(2020) A rapid advice guideline
for the diagnosis and treatment of 2019 novel coronavirus (2019-ncov)
infected pneumonia (standard version). Military Medical Research. doi:
https://doi.org/10.1186/s40779-020-0233-6
Lipsitch, M., Cohen, T., Cooper, B., et al.(2003) Transmission Dynamics
and control of severe acute respiratory syndrome. Science 300:1966–1970. doi:
https://doi.org/10.1126/science.1086616
Li, C., Zhu, Y., Qi, C., et al.(2021) Estimating the prevalence of asymptomatic COVID-19 cases and their con- tribution in transmission - using Henan
Province, China, as an example. Frontiers in Medicine. doi: https://doi.org/
3389/fmed.2021.591372
Ministry of Public Administration(Sl 48-51,53-55). In: Ministry of Public Administration. Government of the Peoples Republic of Bangladesh.
A compartmental model for COVID-19 to assess effects of non-pharmaceutical interventionhttps://mopa.gov.bd/site/view/public holiday archive?page=3&rows=20. Accessed 22 May 2022
Mizumoto ,K., Kagaya, K., Zarebski, A., Chowell, G.(2020) Estimating the
asymptomatic proportion of coron- avirus disease 2019 (covid-19) cases on
board the diamond princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance. doi: https://doi.org/10.2807/1560-7917.es.2020.25.10.2000180
Mubayi, A., Zaleta, C.K., Martcheva, M., Ch´avez, C.C.(2010) A
cost-based comparison of quarantine strategies for new emerging
diseases. Mathematical Biosciences and Engineering 7:687–717. doi:
https://doi.org/10.3934/mbe.2010.7.687
Nda¨ırou, F., Area, I., Nieto, J.J., Torres, D.F.M.(2020) Mathematical modeling
of COVID-19 trans- mission dynamics with a case study of Wuhan. Chaos, Solitons & Fractals 135:109846. doi: https://doi.org/10.1016/j.chaos.2020.109846
Nishiura, H., Kobayashi, T., Miyama, T., et al.(2020) Estimation
of the asymptomatic ratio of novel coronavirus infections (COVID19). International Journal of Infectious Diseases 94:154–155. doi:
https://doi.org/10.1016/j.ijid.2020.03.020
Oloniiju, S.D., Otegbeye, O., Ezugwu, A.E.(2021) Investigating the impact of vaccination and non-pharmaceutical measures in curbing COVID-19
spread: A south africa perspective. Mathematical Biosciences and Engineering
:1058–1077. doi: https://doi.org/10.3934/mbe.2022049
Safi, M.A., Gumel, A.B.(2013) Dynamics of a model with quarantineadjusted incidence and quarantine of susceptible individuals. Journal of Mathematical Analysis and Applications 399:565–575. doi:
https://doi.org/10.1016/j.jmaa.2012.10.015
Shahrear, P., Rahman, S.M., Nahid, M.M.(2021) Prediction and
mathematical analysis of the out- break of coronavirus (COVID19) in Bangladesh. Results in Applied Mathematics 10:100145.
doi:https://doi.org/10.1016/j.rinam.2021.100145
Stebbing, J., Phelan, A., Griffin,I,. et al.(2020) Covid-19: Combining antiviral
and anti-inflammatory treatments. The Lancet Infectious Diseases 20:400–402.
doi: https://doi.org/10.1016/s1473-3099(20)30132-8
van den Driessche, P., Watmough, J.(2002) Reproduction numbers and subthreshold endemic equilib- ria for compartmental models of disease transmission. Mathematical Biosciences 180:29–48. doi: https://doi.org/10.1016/s0025-
(02)00108-6
Wang, S., Pan,Y., Wang, Q., et al.(2020) Modeling the viral dynamics of SARS-COV-2 infection. Mathematical Biosciences 328:108438. doi:
https://doi.org/10.1016/j.mbs.2020.108438
World Health Origanization, Origin of SARS-CoV-2.
https://apps.who.int/iris/bitstream/handle/10665/332197/WHO-2019-
nCoV-FAQ-Virus origin-2020.1-eng.pdf
Zhao, S., Chen, H.(2020) Modeling the epidemic dynamics and control of covid-19 outbreak in China. Quantitative Biology 8:11–19. doi:
https://doi.org/10.1007/s40484-020-0199-0
DOI: http://dx.doi.org/10.24193/subbmath.2023.3.15
Refbacks
- There are currently no refbacks.