Reducing the complexity of equilibrium problems and applications to best approximation problems
Abstract
Keywords
Full Text:
PDFReferences
Minkowski, H., Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs in Gesammelte Abhandlungen, Vol. 2, B. G. Teubner, Leipzig and Berlin, 1911, 131-229.
Webster, R., Convexity, Oxford University Press, New York, NY, 1994.
Breckner, B.E., Popovici, N., Convexity and Optimization: An Introduction, EFES, Cluj-Napoca, 2006.
Martínez-Legaz, J.E., Pintea, C., Closed convex sets with an open or closed Gauss range, Math Program., 189 (2021), 433-454.
Muu, LêD., Oettli, W., Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal., 18 (1992), 1159-1166.
Kassay, G, Rădulescu, V.D., Equilibrium Problems and Applications. Mathematics in Science and Engineering, Elsevier/Academic Press, London, 2019.
Martínez-Legaz J.E, Pintea C., Closed convex sets of Minkowski type, J. Math. Anal. Appl., 444 (2016), 1195-1202.
DOI: http://dx.doi.org/10.24193/subbmath.2023.3.13
Refbacks
- There are currently no refbacks.