Reducing the complexity of equilibrium problems and applications to best approximation problems
DOI:
https://doi.org/10.24193/subbmath.2023.3.13Keywords:
Extreme points, exposed points, equilibrium pointsAbstract
We consider the scalar equilibrium problems governed by a bifunction in a finite-dimensional framework and we characterize the solutions by means of extreme or exposed points.References
Minkowski, H., Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs in Gesammelte Abhandlungen, Vol. 2, B. G. Teubner, Leipzig and Berlin, 1911, 131-229.
Webster, R., Convexity, Oxford University Press, New York, NY, 1994.
Breckner, B.E., Popovici, N., Convexity and Optimization: An Introduction, EFES, Cluj-Napoca, 2006.
Martínez-Legaz, J.E., Pintea, C., Closed convex sets with an open or closed Gauss range, Math Program., 189 (2021), 433-454.
Muu, LêD., Oettli, W., Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal., 18 (1992), 1159-1166.
Kassay, G, Rădulescu, V.D., Equilibrium Problems and Applications. Mathematics in Science and Engineering, Elsevier/Academic Press, London, 2019.
Martínez-Legaz J.E, Pintea C., Closed convex sets of Minkowski type, J. Math. Anal. Appl., 444 (2016), 1195-1202.