Existence results for some anisotropic singular problems via the sub-supersolution method

Abdelrachid El Amrouss, Hamidi Abdellah, Kissi Fouad

Abstract


Using the sub-super solution method, we prove the existence of the solutions for the following anisotropic problem with singularity:
\[\begin{cases}
-\sum\limits_{i=1}^{N} \partial_{i} \left({| \partial_{i} u \vert}^{p_{i}-2} \partial_{i} u \right) = f(x,u) &\qquad\text{in $\;\;\Omega$,}\\
u>0 &\qquad\text{in $\;\;\Omega $,}\\
u=0 &\qquad\text{on $\;\;\partial\Omega $,}
\end{cases}\]

where \(\Omega \subset \mathbb{R}^{N}\) is a bounded domain with smooth boundary and a given singular nonlinearity \(f:\Omega\times(0,\infty)\longrightarrow [0,\infty)\).


Keywords


Anisotropic problem, Singular nonlinearity, Sub-super solution, Strong maximum principle.

Full Text:

PDF

References


Alves, C.O., El Hamidi, A., Existence of solution for a anisotropic equation with critical

exponent, Di erential and Integral Equations., (2008), 25-40.

Boukarabila, Y.O., Miri, S.E.H., Anisotropic system with singular and regular nonlin-

earities, Complex Variables and Elliptic Equations., 65(2020), no. 4, 621-631.

Ciani, S., Figueiredo, G. M., Suarez, A., Existence of positive eigenfunctions to an

anisotropic elliptic operator via the sub-supersolution method, Archiv der Mathematik,

(2021), no. 1, 85-95.

Coclite, G.M., Coclite, M.M., On a Dirichlet problem in bounded domains with singular

nonlinearity, Discrete and Continuous Dynamical Systems, 33(2013), no. 11-12, 4923-

Diaz, J.I., Nonlinear partial di erential equations and free boundaries, Elliptic Equa-

tions, Research Notes in Math., 106(1985), 323.

Di Castro, A., Existence and regularity results for anisotropic elliptic problems, Advanced

Nonlinear Studies, 9(2009), no. 2, 367-393.

Di Castro, A., Local Holder continuity of weak solutions for an anisotropic elliptic equa-

tion, Nonlinear Di er. Equ. Appl., 20(2013), 463-486.

Di Castro, A., Montefusco, E., Nonlinear eigenvalues for anisotropic quasilinear degen-

erate elliptic equations, Nonlinear Analysis: Theory, Methods & Applications, 70(2009),

no. 11, 4093-4105.

Dinca, G., Jebelean, P., Mawhin, J., Variational and topological methods for Dirichlet

problems with p-Laplacian, Portugaliae Mathematica, 58(2001), no. 3, 339.

Dos Santos, G.C., Figueiredo, G.M., Tavares, L.S., Existence results for some anisotropic

singular problems via sub-supersolutions, Milan Journal of Mathematics, 87(2019), 249-

El Amrouss, A., El Mahraoui, A., Existence and multiplicity of solutions for anisotropic

elliptic equation, Boletim da Sociedade Paranaense de Matematica., 40(2022).

Fan, X., Zhao, D., On the spaces Lp(x)() and Wm; p(x)(), Journal of Mathematical

Analysis and Applications, 263(2001), no. 2, 424-446.

Fragala, I., Gazzola, F., Kawohl, B., Existence and nonexistence results for anisotropic

quasilinear elliptic equations, Annales de l'Institut Henri Poincar e C, 21(2004), no. 5,

-734.

Fulks, W., Maybee, J.S., A singular non-linear equation, Osaka Mathematical Journal,

(1960), no. 1, 1-19.

Henriquez-Amador, J., Valez-Santiago, A., Generalized anisotropic neumann problems

of Ambrosetti-Prodi type with nonstandard growth conditions, Journal of Mathematical

Analysis and Applications, 494(2021), no. 2, 124668.

Lair, A.V., Shaker, A.W., Classical and weak solutions of a singular semilinear elliptic

problem, Journal of Mathematical Analysis and Applications, 211(1997), no. 2, 371-385.

Leggat, A.R., Miri, S.E.H., Anisotropic problem with singular nonlinearity, Complex

Variables and Elliptic Equations, 61(2016), no. 4, 496-509.

Lipkova, J., Angelikopoulos, P., Wu, S., Alberts, E., Wiestler, B., Diehl, C., ... , Menze,

B., Personalized radiotherapy design for glioblastoma: Integrating mathematical tumor

models, multimodal scans, and bayesian inference, IEEE Transactions on Medical Imag-

ing, 38(2019), no. 8, 1875-1884.

Loc, N.H., Schmitt, K., Boundary value problems for singular elliptic equations, The

Rocky Mountain Journal of Mathematics, 41(2011), no. 2, 555-572.

Miri, S.E.H., On an anisotropic problem with singular nonlinearity having variable

exponent, Ricerche di Matematica, 66(2017), 415-424.

Mohammed, A., Positive solutions of the p-laplace equation with singular nonlinearity,

Journal of Mathematical Analysis and Applications, 352(2009), no. 1, 234-245.

Perera, K., Silva, E.A., Existence and multiplicity of positive solutions for singular

quasilinear problems, Journal of Mathematical Analysis and Applications, 323(2006),

no. 2, 1238-1252.

Rajagopal, K.R., Ruzicka, M., Mathematical modeling of electrorheological materials,

Continuum Mechanics and Thermodynamics, 13(2001), no. 1, 59-78.

Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Springer,

Zhang, Z., Cheng, J., Existence and optimal estimates of solutions for singular nonlinear

Dirichlet problems, Nonlinear Analysis: Theory, Methods and Applications, 57(2004), no.

, 473-484.




DOI: http://dx.doi.org/10.24193/subbmath.2024.4.10

Refbacks

  • There are currently no refbacks.