Existence results for some anisotropic singular problems via the sub-supersolution method
DOI:
https://doi.org/10.24193/subbmath.2024.4.10Keywords:
Anisotropic problem, Singular nonlinearity, Sub-super solution, Strong maximum principle.Abstract
Using the sub-super solution method, we prove the existence of the solutions for the following anisotropic problem with singularity:
\[\begin{cases}
-\sum\limits_{i=1}^{N} \partial_{i} \left({| \partial_{i} u \vert}^{p_{i}-2} \partial_{i} u \right) = f(x,u) &\qquad\text{in $\;\;\Omega$,}\\
u>0 &\qquad\text{in $\;\;\Omega $,}\\
u=0 &\qquad\text{on $\;\;\partial\Omega $,}
\end{cases}\]
where \(\Omega \subset \mathbb{R}^{N}\) is a bounded domain with smooth boundary and a given singular nonlinearity \(f:\Omega\times(0,\infty)\longrightarrow [0,\infty)\).
References
Alves, C.O., El Hamidi, A., Existence of solution for a anisotropic equation with critical
exponent, Di erential and Integral Equations., (2008), 25-40.
Boukarabila, Y.O., Miri, S.E.H., Anisotropic system with singular and regular nonlin-
earities, Complex Variables and Elliptic Equations., 65(2020), no. 4, 621-631.
Ciani, S., Figueiredo, G. M., Suarez, A., Existence of positive eigenfunctions to an
anisotropic elliptic operator via the sub-supersolution method, Archiv der Mathematik,
(2021), no. 1, 85-95.
Coclite, G.M., Coclite, M.M., On a Dirichlet problem in bounded domains with singular
nonlinearity, Discrete and Continuous Dynamical Systems, 33(2013), no. 11-12, 4923-
Diaz, J.I., Nonlinear partial di erential equations and free boundaries, Elliptic Equa-
tions, Research Notes in Math., 106(1985), 323.
Di Castro, A., Existence and regularity results for anisotropic elliptic problems, Advanced
Nonlinear Studies, 9(2009), no. 2, 367-393.
Di Castro, A., Local Holder continuity of weak solutions for an anisotropic elliptic equa-
tion, Nonlinear Di er. Equ. Appl., 20(2013), 463-486.
Di Castro, A., Montefusco, E., Nonlinear eigenvalues for anisotropic quasilinear degen-
erate elliptic equations, Nonlinear Analysis: Theory, Methods & Applications, 70(2009),
no. 11, 4093-4105.
Dinca, G., Jebelean, P., Mawhin, J., Variational and topological methods for Dirichlet
problems with p-Laplacian, Portugaliae Mathematica, 58(2001), no. 3, 339.
Dos Santos, G.C., Figueiredo, G.M., Tavares, L.S., Existence results for some anisotropic
singular problems via sub-supersolutions, Milan Journal of Mathematics, 87(2019), 249-
El Amrouss, A., El Mahraoui, A., Existence and multiplicity of solutions for anisotropic
elliptic equation, Boletim da Sociedade Paranaense de Matematica., 40(2022).
Fan, X., Zhao, D., On the spaces Lp(x)() and Wm; p(x)(), Journal of Mathematical
Analysis and Applications, 263(2001), no. 2, 424-446.
Fragala, I., Gazzola, F., Kawohl, B., Existence and nonexistence results for anisotropic
quasilinear elliptic equations, Annales de l'Institut Henri Poincar e C, 21(2004), no. 5,
-734.
Fulks, W., Maybee, J.S., A singular non-linear equation, Osaka Mathematical Journal,
(1960), no. 1, 1-19.
Henriquez-Amador, J., Valez-Santiago, A., Generalized anisotropic neumann problems
of Ambrosetti-Prodi type with nonstandard growth conditions, Journal of Mathematical
Analysis and Applications, 494(2021), no. 2, 124668.
Lair, A.V., Shaker, A.W., Classical and weak solutions of a singular semilinear elliptic
problem, Journal of Mathematical Analysis and Applications, 211(1997), no. 2, 371-385.
Leggat, A.R., Miri, S.E.H., Anisotropic problem with singular nonlinearity, Complex
Variables and Elliptic Equations, 61(2016), no. 4, 496-509.
Lipkova, J., Angelikopoulos, P., Wu, S., Alberts, E., Wiestler, B., Diehl, C., ... , Menze,
B., Personalized radiotherapy design for glioblastoma: Integrating mathematical tumor
models, multimodal scans, and bayesian inference, IEEE Transactions on Medical Imag-
ing, 38(2019), no. 8, 1875-1884.
Loc, N.H., Schmitt, K., Boundary value problems for singular elliptic equations, The
Rocky Mountain Journal of Mathematics, 41(2011), no. 2, 555-572.
Miri, S.E.H., On an anisotropic problem with singular nonlinearity having variable
exponent, Ricerche di Matematica, 66(2017), 415-424.
Mohammed, A., Positive solutions of the p-laplace equation with singular nonlinearity,
Journal of Mathematical Analysis and Applications, 352(2009), no. 1, 234-245.
Perera, K., Silva, E.A., Existence and multiplicity of positive solutions for singular
quasilinear problems, Journal of Mathematical Analysis and Applications, 323(2006),
no. 2, 1238-1252.
Rajagopal, K.R., Ruzicka, M., Mathematical modeling of electrorheological materials,
Continuum Mechanics and Thermodynamics, 13(2001), no. 1, 59-78.
Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Springer,
Zhang, Z., Cheng, J., Existence and optimal estimates of solutions for singular nonlinear
Dirichlet problems, Nonlinear Analysis: Theory, Methods and Applications, 57(2004), no.
, 473-484.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.