Multiplicity of weak solutions for a class of non-homogeneous anisotropic elliptic systems
Abstract
Keywords
Full Text:
PDFReferences
Ahmed, A., Ahmedatt, T., Hjiaj, H., Touzani, A., Existence of in nitly many weak so-
lutions for some quasi-linear ~p( )-elliptic Neumann problems, Math. Bohem., 142(2017),
no. 3, 243-262.
Ahmed, A., Elemine Vall, M.S.B., Touzani, A., Benkirane, A., Existence of in nitely
many solutions the Neumann problem for quasi-linear elliptic systems involving the p( )
and q( )-Laplacian, Nonlinear Stud., 24(2017), no. 3, 687-698.
Ahmed, A., Elemine Vall, M.S.B., Touzani, A., Benkirane, A., In nitely many solutions
to the Neumann problem for elliptic systems in anisotropic variable exponent Sobolev
spaces, Moroccan J. Pure and Appl. Anal., 3(2017), no. 1, 70-82.
Ahmed, A., Hjiaj, H., Touzani, A., Existence of in nitely many weak solutions for a Neu-
mann elliptic equations involving the ~p( )-Laplacian operator, Rend. Circ. Mat. Palermo
(2), 64(2015), no. 3, 459-473.
Bendahmane, M., Chrif, M., El Manouni, S., An approximation result in generalized
anisotropic Sobolev spaces and application, Z. Anal. Anwend., 30(2011), no. 3, 341-353.
Bendahmane, M., Mokhtari, F., Nonlinear elliptic systems with variable exponents and
measure data, Moroccan J. Pure and Appl. Anal., 1(2015), no. 2, 108-125.
Boccardo, L., Figueiredo, D.G.De., Some Remarks on a system of quasilinear elliptic
equations, NoDEA Nonlinear Di erential Equations Appl., 9(2002), no. 3, 309-323.
Boureanu, M.M., In nitely many solutions for a class of degenerate anisotropic elliptic
problems with variable exponent, Taiwanese J. Math., 15(2011), no. 5, 2291-2310.
Boureanu, M.M., A new class of nonhomogeneous di erential operators and applications
to anisotropic systems, Complex Var. Elliptic Equ., 61(2016), no. 5, 712-730.
Boureanu, M.M., Multiple solutions for two general classes of anisotropic systems with
variable exponents, Journal d'Analyse Math ematique, 150(2023), 685-735.
Boureanu, M.M., Matei, A., Sofonea, M., Nonlinear problems with p( )-growth conditions
and applications to antiplane contact models, Adv. Nonlinear Stud., 14(2014), no. 2, 295-
Boureanu, M.M., R adulescu, V.D., Anisotropic Neumann problems in Sobolev spaces
with variable exponent, Nonlinear Anal., 75(2012), no. 12, 4471-4482.
Boureanu, M.M., Udrea, C., Udrea, D.N., Anisotropic problems with variable exponents
and constant Dirichlet condition, Electron. J. Di erential Equations, 2013(2013), no.
, 1-13.
Diening, L., Harjulehto, P., Hasto, P., R u zi cka, M., Lebesgue and Sobolev spaces with
variable exponents, Lecture Notes in Math., 2017(2011).
Fan, X., Anisotropic variable exponent Sobolev spaces and ~p( )-Laplacian equations,
Complex Var. Elliptic Equ., 56(2011), no. 7-9, 623-642.
Fragal a, I., Gazzola, F., Kawohl, B., Existence and nonexistence results for anisotropic
quasi-linear equations, Ann. Inst. H. Poincar e C Anal. Non Lin eaire, 21(2004), no. 5,
-734.
Kone, B., Ouaro, S., Traore, S., Weak solutions for anisotropic nonlinear elliptic equa-
tions with variable exponents, Electron. J. Di erential Equations, 2009(2009), no. 144,
-11.
Mih ailescu, M., Moro sanu, G., Existence and multiplicity of solutions for an anisotropic
elliptic problem involving variable exponent growth conditions, Appl. Anal. 89(2010), no.
, 257-271.
Mih ailescu, M., Pucci, P., R adulescu, V.D., Eigenvalue problems for anisotropic quasi-
linear elliptic equations with variable exponent, J. Math. Anal. Appl., 340(2008), no. 1,
-698.
Moschetto, D.S., In ntely many solutions to the Dirichlet problem for quasilinear elliptic
systems involving the p(x) and q(x) Laplacien, Matematiche (Catania), 63(2008), no. 1,
-233.
Moschetto, D.S., In nitely many solutions to the Neumann problem for quasilinear ellip-
tic systems involving the p(x) and q(x)-Laplacian, International Mathematical Forum,
(2009), no. 24, 1201-1211.
R akosn k, J., Some remarks to anisotropic Sobolev spaces I, Beitrage zur Analysis,
(1979), 55-68.
R akosn k, J., Some remarks to anisotropic Sobolev spaces II, Beitrage zur Analysis,
(1981), 127-140.
Ricceri, B., A general variational principle and some of its applications, J. Comput.
Appl. Math., 113(2000), no. 1-2, 401-410.
V elin, J., Existence result for a gradient-type elliptic system involving a pair of p(x) and
q(x)-Laplacian operators, Complex Var. Elliptic Equ., 61(2016), no. 5, 644-681.
Zhao, L., Zhao, P., Xie, X., Existence and multiplicity of solutions for divergence type
elliptic equations, Electron. J. Di erential Equations, 2011(2011), no. 43, 1-9.
DOI: http://dx.doi.org/10.24193/subbmath.2024.4.11
Refbacks
- There are currently no refbacks.