Some applications of a Wright distribution series on subclasses of univalent functions
Abstract
Keywords
Full Text:
PDFReferences
Altınkaya, S¸. Yal¸cın, S., Poisson distribution series for analytic univalent functions, Complex Anal. Oper. Theory, 12, (2019), no. 5, 1315-1319.
https://doi.org/10.1007/s11785-018-0764-y
Arif, M., Umar, S., Mahmood, S., New reciprocal class of analytic functions associated with linear operator. Iran. J. Sci. Technol. Trans. Sci., 42, (2018), 881-886. https://doi.org/10.1007/s40995-016-0059-y
Al-Hawar, T., Frasin, B. A., Coefficient estimates and subordination properties for certain classes of analytic functions of reciprocal order, Stud. Univ. Babes Bolyai Math., 63, (2018), no. 2, 203-212.
Dixit, K. K., Pal, S. K., On a class of univalent functions related to complex order, Indian J. Pure Appl. Math., 26, (1995), no. 9, 889–896.
El-Deeb, S. M., Bulboac˘a, T., Dziok, J., Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59, (2019), no. 2, 301-314.
Eker, S. S., Murugusundaramoorthy, G., S¸eker, B. Spiral-like functions associated with Miller–Ross-type Poisson distribution series, Bol. Soc. Mat. Mex. 29, 16 (2023). https://doi.org/10.1007/s40590-022-00488-7
Frasin, B. A., Talafha, Y., Al-Hawary, T., Subordination results for classes of functions of reciprocal order, Tamsui Oxford J. Info. Math. Sci., 30, (2014), 81-89.
Frasin, B. A., Abd Sabri, M., Sufficient conditions for starlikeness of reciprocal order, Eur. J. Pure Appl. Math., 10, (2017), no. 4, 871-876.
Gorenflo, R., Luchko, Y., Mainardi, F., Analytic properties and applications of Wright functions, Fract. Calc. Appl. Anal., 2, (1999), no. 4, 383-414.
Murugusundaramoorthy, G., Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat., 28, (2017), 1357-1366. https://doi.org/10.1007/s13370-017-0520-x
Kamali, M., Riskulova, A., On subordination results for certain classes of analytic functions of reciprocal order, Int. J. Anal. Appl., 19, (2021), no. 1, 123-137. https://doi.org/10.28924/2291-8639-19-2021-123
Kumar, V., Kumar S., Cho, N. E., Certain Coefficient functionals for Starlike functions of reciprocal order alpha, Thai J. Math., 20, (2022), no. 3, 1183-1197.
Maharana, S., Sahoo, S. K., Inclusion properties of planar harmonic mappings associated with the Wright function, Complex Variables and Elliptic Equations, 66, (2021), no. 10, 1619-1641. https://doi.org/10.1080/17476933.2020.1772765
Maharana, S., Prajapat, J. K., Bansal, D., Geometric properties of Wright function, Math. Bohem., 143, (2018), no. 1, 99–111.
https://doi.org/10.21136/MB.2017.0077-16
Mustafa, N., Geometric properties of normalized Wright function, Math. Comput. Appl., 21, no. 14, (2016). https://doi.org/10.3390/mca21020014
Mustafa, N., Nezir, V., Dutta, H., Geometric Properties of Normalized Wright Functions. In: Dutta, H., Peters, J. (eds) Applied Mathematical Analysis: Theory, Methods, and Applications. Studies in Systems, Decision and Control, vol 177. Springer, Cham. (2020). https://doi.org/10.1007/978-3-319-99918-0-22
Mahmood, S., Sokol, J., Srivastava, H. M., Malik, S. N., Some reciprocal classes of close-to-convex and quasi-convex analytic functions, Mathematics, 7, (2019), no. 4, 309. https://doi.org/10.3390/math7040309
Nazeer, W., Mehmood, Q., Kang, S. M., Haq, A. U., An application of Binomial distribution series on certain analytic functions, J. Comput. Anal. Appl., 26, (2019), 11-17.
Noor, K. I., Khan, N., Ahmad, Q. Z., Coefficient bounds for a subclass of multivalent functions of reciprocal order, Mathematics, 2, (2017), no. 2, 322- 335. https://doi.org/ 10.3934/Math.2017.2.322
Nunokawa, M., Owa, S., Nishiwaki, J., Kuroki, K., Hayami, T., Differential subordination and argumental property, Comput. Math. Appl., 56, (2008), no. 10, 2733-2736. https://doi.org/10.1016/j.camwa.2008.02.050
Owa, S., Srivastava, H. M., Some generalized convolution properties associated with certain subclasses of analytic functions, J. Ineq. Pure Appl. Math, 3, (2002), 1-13.
Prajapat, J. K., Certain geometric properties of the Wright
function, Integral Transforms Spec. Funct., 26, (2015), 203-212.
https://doi.org/10.1080/10652469.2014.983502
Porwal, S., Ahamad, D., An application of hypergeometric distribution type series on certain analytic functions, Thai J. Math., 18, (2019), no. 4, 2071- 2078.
Porwal, S., Pathak, A. L., Mishra, O., Wright distribution and its applications on univalent functions, U.P.B. Sci. Bull., Series A, 84, (2022), no. 4, 81-88.
Porwal, S., Kumar, M., A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat., 27, (2016), no. 5, 1021–1027.
https://doi.org/10.1007/s13370-016-0398-z
Polatoglu, Y., Blocal, M., Sen, A., Yavuz, E., An investigation on a subclass of p-valently starlike functions in the unit disc, Turk. J. Math., 31, (2007), 221-228.
Robertson, M. S., Univalent functions f(z) for which zf ’(z) is spirallike, Michigan Math. J., 16, (1969), 315-324.
Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51, (1975), 109-116.
Ravichandran, V., Sivaprasad Kumar, S., Argument estimate for starlike functions of reciprocal order, Southeast Asian Bull. Math., 35, (2011), no. 5, 837-843.
Shrigan, M. G., Yal¸cin, S., Altınkaya, S¸., Unified approach to starlike and convex functions involving Poisson distribution series, Bul. Acad. S¸tiint¸e Repub. Moldova Mat., 97, (2021), no. 3, 11-20.
Uyanik, N., Shiraishi, H., Owa, S., Polatoglu, Y., Reciprocal classes of p-valently spirallike and p-valently Robertson functions, J. Ineq. Appl., (2011), 1-10. https://doi.org/10.1186/1029-242X-2011-61
Venkateswarlu, B. Vamshee Krishna, D., Rani, N., Third Hankel determinant for the inverse of reciprocal of bounded turning functions, Bul. acad. stiinte Repub. Moldova Mat., 79, (2015), no. 3, 50-59.
Wright, E. M., On the coefficients of power series having exponential Singularities, J. London Math. Soc., 8 (1993), 71-79.
Wanas, A. K., Khuttar, J. A., Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., 4, (2020), no. 1, 71-82.
DOI: http://dx.doi.org/10.24193/subbmath.2024.4.04
Refbacks
- There are currently no refbacks.