A fixed point approach to the semi-linear Stokes problem
Abstract
Full Text:
PDFReferences
Benjamaa, M., Krichen, B., Meslameni, M., emph{Fixed point theory in fluid mechanics: An application to the stationary Navier-Stokes problem},
J. Pseudo-Differ. Oper. Appl., textbf{8}(2017), 141-146.
Boyer, B., Fabrie, P., emph{Mathematical Tools for the
Navier-Stokes Equations and Related Models Study of the Incompressible}, Springer, New York, 2010.
Brezis, H., emph{Functional Analysis, Sobolev Spaces and
Partial Differential Equations}, Springer, New York, 2010.
Jebelean, P., emph{Probleme la limitu{a} eliptice}, Editura de Vest, Timic{s}oara, 2008.
O'Regan, D., Precup, R., emph{Theorems of Leray-Schauder Type and Application}, Gordon and Breach Science, Amsterdam, 2001.
Precup, R., emph{Methods in Nonlinear Integral Equations},
Springer, Dordrecht, 2002.
Precup, R., emph{Linear and Semilinear Partial Differential Equations}, De Gruyter, Berlin, 2013.
Siddiqi, A.H., emph{Functional Analysis and Applications},
Springer, Singapore, 2018.
Sohr, H., emph{The Navier-Stokes Equations -- An Elementary Functional Analytic Approach}, Springer, New York, 2001.
Temam, R., emph{Navier-Stokes Equations: Theory and Numerical Analysis}, North-Hollad, Amsterdam, 1997.
DOI: http://dx.doi.org/10.24193/subbmath.2023.3.08
Refbacks
- There are currently no refbacks.