Topological degree methods for nonlinear elliptic systems with variable exponents
Abstract
Keywords
Full Text:
PDFReferences
Acerbi, E., Mingione, G., Regularity results for stationary electro-eheological
fluids,
Arch. Ration. Mech. Anal., 164(2002), no. 3, 213-259.
Ait Hammou, M., Azroul, E., Lahmi, B., Existence of solutions for p(x)-Laplacian
Dirichlet problem by topological degree, Bull. Transilv. Univ. Brasov Ser III., 11(2018),
no. 2, 29-38.
Ait Hammou, M., Azroul, E., Existence result for a nonlinear elliptic problem by topo-
logical degree in Sobolev spaces with variable exponent, Moroccan J. of Pure and Appl.
Anal. (MJPAA), 7(2021), no. 1 ,50-65.
Baraket, S., Molica Bisci, G., Multiplicity results for elliptic Kirchho -type problems,
Adv. Nonlinear Anal., 6(2017), no. 1, 85-93.
Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type
mappings, J. Di erential. Equations, 234(2007), no. 1, 289-310.
Brouwer, L.E.J., Uber Abbildung von Mannigfaltigkeiten, Math. Ann., 71(1912), 97-115.
Browder, F.E., Degree of mapping for nonlinear mappings of monotone type, Proc. Natl.
Acad. Sci. USA., 80(1983), no. 6, 1771-1773.
Browder, F.E., Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc.,
(1983), no. 1, 1-39.
Cencelj, M., Repovs, D., Virk, Z., Multiple perturbations of a singular eigenvalue prob-
lem, Nonlinear Anal. 119(2015), 37-45.
Chabrowski, J., Fu, Y., Existence of solutions for p(x)-Laplacian problems on a bounded
domain, J. Math. Anal. Appl, 306(2005), no. 2, 604-618.
Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image
restoration, SIAM J. Appl. Math., 66(2006), no. 4, 1383-1406.
Dingien, L., Harjulehto, P., Hasto, P., Ruzicka, M., Lebesgue and Sobolev Spaces with
Vriable Exponent, Lecture Notes in Mathematics, Springer, Berlin 2011.
Dos Santos, G.G., Figueiredo, G.M., Tavares, L.S., Sub-super solution method for non-
local systems involving the p(x)-Laplacian operator, Electron. J. Di erential Equations,
(2020), no. 25, 1-19.
Edmunds, D.E., Lang, J., Nekvinda, A., On Lp(x)() norms, Proceedings of the Royal
Society of London. Series A., 455(1999), 219-225.
Edmunds, D.E., Rakosnik, J., Sobolev embeddings with variable exponent, Studia Math-
ematica, 143(2000), no. 3, 267-293.
Fan, X.L., On the sub-super solution method for p(x)-Laplacian equations, J. Math.
Anal. Appl., 330(2007), no. 1, 665-682.
Fan, X.L., Shen, J., Zhao, D., Sobolev embedding theorems for spaces Wm;p(x)(), J.
Math. Anal. Appl., 262(2001), no. 2, 749-760.
Fan, X.L., Zhang, Q.H., Existence of solutions for p(x)-Laplacian Dirichlet problem,
Nonlinear Anal., 52(2003), no. 8, 1843-1852.
Fan, X.L., Zhao, D., On the spaces Lp(x)() and Wm;p(x)(), J. Math. Anal. Appl.,
(2001), no. 2, 424-446.
Kim, I.S., Hong, S.J., A toplogical degree for operators of generalized (S+) type, Fixed
Point Theory Algorithms Sci. Eng., 2015(2015), 194.
Kovacik, O., Rakosnik, J., On spaces Lp(x)() and Wm;p(x)(), Czechoslovak Math. J.,
(1991), 592-618.
Leray, J., Schauder, J., Topologie et equations fonctionnelles, Ann. Sci. Ec. Norm. Super,
(1934), no. 3, 45-78.
Li, D., Chen, F., Wu, Y., An, Y., Variational formulation for nonlinear impulsive
fractional di erential equations with (p; q)-Laplacian operator, Math. Methods Appl.
Sci., 45(2022), no. 1, 515-531.
Matallah, H., Maouni, M., Lakhal, H., Global weak solution to a generic reaction-
di usion nonlinear parabolic system, Math. Methods Appl. Sci., 45(2022), no. 11, 6935-
Mokhtar, N., Mokhtari, F., Anisotropic nonlinear elliptic systems with variable exponents
and degenerate coercivity, Appl. Anal., 100(2019), no. 11, 2347-2367.
Moussaoui, A., V elin, J., Existence and a priori estimates of solutions for quasilinear
singular elliptic systems with variable exponents, J. Elliptic Parabol Equ., 4(2018), 417-
Pucci, P., Xiang, M., Zhang, B., Existence and multiplicity of entire solutions for frac-
tional p-Kirchho equations, Adv. Nonlinear Anal., 5(2016), no. 1, 27-55.
Radulescu, V., Repovs, D., Partial Di erential Equations with Variable Exponents, Vari-
ational Methods and Qualitative Analysis, Monographs and Research Note in Mathemat-
ics, CRC Press, Boca Raton, FL, 2015.
Ruzicka, M., Electrorheological Fluids: Modelling and Mathematical Theory, Springer-
Verlag, Berlin, 2000.
Sai a, O., V elinK, J., Existence result for variable exponents elliptic system with lack of
compactness, Appl. Anal., 101(2020), no. 6, 2119-2143.
Wang, J., Han, W., Existence of multiple positive solutions for singular p-q-Laplacian
problems with critical nonlinearities, Math. Methods Appl. Sci., 45(2022), no. 2, 1005-
Zeidler, E., Nonlinear Functional Analysis and its Applications II/B: Nonlinear Mono-
tone Operators, Springer, New York, 1990.
Zhao D., Qiang, W.J., Fan, X.L., On generalized Orlicz spaces Lp(x)(), J. Gansu Sci.,
(1996), no. 2, 1-7.
Zhikov, V., Averaging of functionals in the calculus of variations and elasticity, Math.
USSR Izv., 29(1987), no. 1, 33-66.
DOI: http://dx.doi.org/10.24193/subbmath.2024.4.12
Refbacks
- There are currently no refbacks.