Topological degree methods for nonlinear elliptic systems with variable exponents

Samira Lecheheb, Abdelhak Fekrache

Abstract


In this paper, we consider the existence of a distributional solution for nonlinear elliptic system governed by \((p(x),q(x))\)-Laplacian operators.  We show that the system has at least one solution by using the topological degree theory. Our results improve and generalize existing results with another technical approach.

Keywords


p(x)-Laplacian, operator of (S_+) type, variable exponent, topological degree

Full Text:

PDF

References


Acerbi, E., Mingione, G., Regularity results for stationary electro-eheological

fluids,

Arch. Ration. Mech. Anal., 164(2002), no. 3, 213-259.

Ait Hammou, M., Azroul, E., Lahmi, B., Existence of solutions for p(x)-Laplacian

Dirichlet problem by topological degree, Bull. Transilv. Univ. Brasov Ser III., 11(2018),

no. 2, 29-38.

Ait Hammou, M., Azroul, E., Existence result for a nonlinear elliptic problem by topo-

logical degree in Sobolev spaces with variable exponent, Moroccan J. of Pure and Appl.

Anal. (MJPAA), 7(2021), no. 1 ,50-65.

Baraket, S., Molica Bisci, G., Multiplicity results for elliptic Kirchho -type problems,

Adv. Nonlinear Anal., 6(2017), no. 1, 85-93.

Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type

mappings, J. Di erential. Equations, 234(2007), no. 1, 289-310.

Brouwer, L.E.J., Uber Abbildung von Mannigfaltigkeiten, Math. Ann., 71(1912), 97-115.

Browder, F.E., Degree of mapping for nonlinear mappings of monotone type, Proc. Natl.

Acad. Sci. USA., 80(1983), no. 6, 1771-1773.

Browder, F.E., Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc.,

(1983), no. 1, 1-39.

Cencelj, M., Repovs, D., Virk, Z., Multiple perturbations of a singular eigenvalue prob-

lem, Nonlinear Anal. 119(2015), 37-45.

Chabrowski, J., Fu, Y., Existence of solutions for p(x)-Laplacian problems on a bounded

domain, J. Math. Anal. Appl, 306(2005), no. 2, 604-618.

Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image

restoration, SIAM J. Appl. Math., 66(2006), no. 4, 1383-1406.

Dingien, L., Harjulehto, P., Hasto, P., Ruzicka, M., Lebesgue and Sobolev Spaces with

Vriable Exponent, Lecture Notes in Mathematics, Springer, Berlin 2011.

Dos Santos, G.G., Figueiredo, G.M., Tavares, L.S., Sub-super solution method for non-

local systems involving the p(x)-Laplacian operator, Electron. J. Di erential Equations,

(2020), no. 25, 1-19.

Edmunds, D.E., Lang, J., Nekvinda, A., On Lp(x)() norms, Proceedings of the Royal

Society of London. Series A., 455(1999), 219-225.

Edmunds, D.E., Rakosnik, J., Sobolev embeddings with variable exponent, Studia Math-

ematica, 143(2000), no. 3, 267-293.

Fan, X.L., On the sub-super solution method for p(x)-Laplacian equations, J. Math.

Anal. Appl., 330(2007), no. 1, 665-682.

Fan, X.L., Shen, J., Zhao, D., Sobolev embedding theorems for spaces Wm;p(x)(), J.

Math. Anal. Appl., 262(2001), no. 2, 749-760.

Fan, X.L., Zhang, Q.H., Existence of solutions for p(x)-Laplacian Dirichlet problem,

Nonlinear Anal., 52(2003), no. 8, 1843-1852.

Fan, X.L., Zhao, D., On the spaces Lp(x)() and Wm;p(x)(), J. Math. Anal. Appl.,

(2001), no. 2, 424-446.

Kim, I.S., Hong, S.J., A toplogical degree for operators of generalized (S+) type, Fixed

Point Theory Algorithms Sci. Eng., 2015(2015), 194.

Kovacik, O., Rakosnik, J., On spaces Lp(x)() and Wm;p(x)(), Czechoslovak Math. J.,

(1991), 592-618.

Leray, J., Schauder, J., Topologie et equations fonctionnelles, Ann. Sci. Ec. Norm. Super,

(1934), no. 3, 45-78.

Li, D., Chen, F., Wu, Y., An, Y., Variational formulation for nonlinear impulsive

fractional di erential equations with (p; q)-Laplacian operator, Math. Methods Appl.

Sci., 45(2022), no. 1, 515-531.

Matallah, H., Maouni, M., Lakhal, H., Global weak solution to a generic reaction-

di usion nonlinear parabolic system, Math. Methods Appl. Sci., 45(2022), no. 11, 6935-

Mokhtar, N., Mokhtari, F., Anisotropic nonlinear elliptic systems with variable exponents

and degenerate coercivity, Appl. Anal., 100(2019), no. 11, 2347-2367.

Moussaoui, A., V elin, J., Existence and a priori estimates of solutions for quasilinear

singular elliptic systems with variable exponents, J. Elliptic Parabol Equ., 4(2018), 417-

Pucci, P., Xiang, M., Zhang, B., Existence and multiplicity of entire solutions for frac-

tional p-Kirchho equations, Adv. Nonlinear Anal., 5(2016), no. 1, 27-55.

Radulescu, V., Repovs, D., Partial Di erential Equations with Variable Exponents, Vari-

ational Methods and Qualitative Analysis, Monographs and Research Note in Mathemat-

ics, CRC Press, Boca Raton, FL, 2015.

Ruzicka, M., Electrorheological Fluids: Modelling and Mathematical Theory, Springer-

Verlag, Berlin, 2000.

Sai a, O., V elinK, J., Existence result for variable exponents elliptic system with lack of

compactness, Appl. Anal., 101(2020), no. 6, 2119-2143.

Wang, J., Han, W., Existence of multiple positive solutions for singular p-q-Laplacian

problems with critical nonlinearities, Math. Methods Appl. Sci., 45(2022), no. 2, 1005-

Zeidler, E., Nonlinear Functional Analysis and its Applications II/B: Nonlinear Mono-

tone Operators, Springer, New York, 1990.

Zhao D., Qiang, W.J., Fan, X.L., On generalized Orlicz spaces Lp(x)(), J. Gansu Sci.,

(1996), no. 2, 1-7.

Zhikov, V., Averaging of functionals in the calculus of variations and elasticity, Math.

USSR Izv., 29(1987), no. 1, 33-66.




DOI: http://dx.doi.org/10.24193/subbmath.2024.4.12

Refbacks

  • There are currently no refbacks.