Bounds of third and fourth Hankel determinants for a generalized subclass of bounded turning functions subordinated to sine function
DOI:
https://doi.org/10.24193/subbmath.2024.4.06Keywords:
Bounded turning functions, Hankel determinant, analytic functions, coefficient inequalitiesAbstract
The objective of this paper is to investigate the bounds of third and fourth Hankel determinants for a generalized subclass of bounded turning functions associated with sine function, in the open unit disc. The results are also extended to two-fold and three-fold symmetric functions. This investigation will generalize the resuls of some earlier works.
References
Altinkaya, S ., Yal cin, S., Third Hankel determinant for Bazilevic functions, Adv. Math.,
Sci. J., 5(2016), no. 2, 91-96.
Arif, M., Rani, L., Raza, M., Zaprawa, P., Fourth Hankel determinant for the family of
functions with bounded turning, Bull. Korean Math. Soc., 55(2018), no. 6, 1703-1711.
Arif, M., Raza, M., Tang, H., Hussain, S., Khan, H., Hankel determinant of order
three for familiar subsets of ananlytic functions related with sine function, Open Math.,
(2019), 1615-1630.
Babalola, K. O., On H3(1) Hankel determinant for some classes of univalent functions,
Inequal. Theory Appl., 6(2010), 1-7.
Bieberbach, L., Uber die koe zienten derjenigen Potenzreihen, welche eine schlichte
Abbildung des Einheitskreises vermitteln, Sitzungsberichte Preussische Akademie der
Wissenschaften, 138(1916), 940-955.
Bucur, R., Breaz, D., Georgescu, L., Third Hankel determinant for a class of analytic
functions with respect to symmetric points, Acta Univ. Apulensis, 42(2015), 79-86.
Cho, N.E., Kumar, V., Kumar, S.S., Ravichandran, V., Radius problems for starlike
functions associated with sine function, Bull. Iranian Math. Soc., 45(2019), 213-232.
De-Branges, L., A proof of the Bieberbach conjecture, Acta Math., 154(1985), 137-152.
Ehrenborg, R., The Hankel determinant of exponential polynomials, Amer. Math.
Monthly, 107(2000), 557-560.
Janteng, A., Halim, S.A., Darus, M., Hankel determinant for starlike and convex functions
, Int. J. Math. Anal., 1(2007), no. 13, 619-625.
Khan, M.G., Ahmad, B., Sokol, J., Muhammad, Z., Mashwani, W.K., Chinram, R.,
Petchkaew, P., Coe cient problems in a class of functions with bounded turning associated
with sine function, Eur. J. Pure Appl. Math., 14(2021), no. 1, 53-64.
Layman, J.W., The Hankel transform and some of its properties, J. Integer Seq., 4(2001),
-11.
Libera, R.J., Zlotkiewiez, E.J., Early coe cients of the inverse of a regular convex function,
Proc. Amer. Math. Soc., 85(1982), 225-230.
Libera, R.J., Zlotkiewiez, E.J., Coe cient bounds for the inverse of a function with
derivative in P, Proc. Amer. Math. Soc., 87(1983), 251-257
Ma, W., Generalized Zalcman conjecture for starlike and typically real functions, J.
Math. Anal. Appl. 234(1999), 328-329.
MacGregor, T.H., Functions whose derivative has a positive real part, Trans. Amer.
Math. Soc., 104(1962), 532-537.
MacGregor, T.H., The radius of univalence of certain analytic functions, Proc. Amer.
Math. Soc. 14(1963), 514-520.
Mehrok, B.S., Singh, G., Estimate of second Hankel determinant for certain classes of
analytic functions, Sci. Magna, 8(2012), no. 3, 85-94.
Murugusundramurthi, G., Magesh, N., Coe cient inequalities for certain classes of analytic
functions associated with Hankel determinant, Bull. Math. Anal. Appl., 1(2009),
no. 3, 85-89.
Noor, K.I., Hankel determinant problem for the class of functions with bounded boundary
rotation, Rev. Roumaine Math. Pures Appl., 28(1983), no. 8, 731-739.
Pommerenke, C., On the coe cients and Hankel determinants of univalent functions, J.
Lond. Math. Soc., 41(1966), 111-122.
Pommerenke, C., Univalent Functions, Math. Lehrbucher, Vandenhoeck and Ruprecht,
Gottingen, 1975.
Ravichandran, V., Verma, S., Bound for the fth coe cient of certain starlike functions,
Comptes Rendus Math., 353(2015), 505-510.
Reade, M.O., On close-to-convex univalent functions, Michigan Math. J., 3(1955-56),
-62.
Shanmugam, G., Stephen, B.A., Babalola, K.O., Third Hankel determinant for starlike
functions, Gulf J. Math., 2(2014), no. 2, 107-113.
Singh, G., Hankel determinant for a new subclass of analytic functions, Sci. Magna,
(2012), no. 4, 61-65.
Singh, G., Singh, G., Hankel determinant problems for certain subclasses of Sakaguchitype
functions de ned with subordination, Korean J. Math., 30(2022), no. 1, 81-90.
Singh, G., Singh, G., Singh, G., Upper bound on fourth Hankel determinant for certain
subclass of multivalent functions, Jnanabha, 50(2020), no. 2, 122-127.
Singh, G., Singh, G., Singh, G., Fourth Hankel determinant for a subclass of analytic
functions de ned by generalized Salagean operator, Creat. Math. Inform., 31(2022), no.
, 229-240.
Zhang, H. Y., Tang, H., A study of fourth order Hankel determinant for starlike functions
connected with the sine function, J. Funct. Spaces, 2021, Article Id. 9991460, 8 pages.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.