Bounds of third and fourth Hankel determinants for a generalized subclass of bounded turning functions subordinated to sine function

Authors

  • Gagandeep Singh Khalsa College Amritsar
  • Gurcharanjit Singh Department of Mathematics, G.N.D.U. College, Chungh, Punjab, India

DOI:

https://doi.org/10.24193/subbmath.2024.4.06

Keywords:

Bounded turning functions, Hankel determinant, analytic functions, coefficient inequalities

Abstract

The objective of this paper is to investigate the bounds of third and fourth Hankel determinants for a generalized subclass of bounded turning functions associated with sine function, in the open unit disc. The results are also extended to two-fold and three-fold symmetric functions. This investigation will generalize the resuls of some earlier works.

Author Biography

  • Gagandeep Singh, Khalsa College Amritsar

    Assistant Professor in Mathematics

    Khal;sa College Amritsar, Punjab, India

References

Altinkaya, S ., Yal cin, S., Third Hankel determinant for Bazilevic functions, Adv. Math.,

Sci. J., 5(2016), no. 2, 91-96.

Arif, M., Rani, L., Raza, M., Zaprawa, P., Fourth Hankel determinant for the family of

functions with bounded turning, Bull. Korean Math. Soc., 55(2018), no. 6, 1703-1711.

Arif, M., Raza, M., Tang, H., Hussain, S., Khan, H., Hankel determinant of order

three for familiar subsets of ananlytic functions related with sine function, Open Math.,

(2019), 1615-1630.

Babalola, K. O., On H3(1) Hankel determinant for some classes of univalent functions,

Inequal. Theory Appl., 6(2010), 1-7.

Bieberbach, L., Uber die koe zienten derjenigen Potenzreihen, welche eine schlichte

Abbildung des Einheitskreises vermitteln, Sitzungsberichte Preussische Akademie der

Wissenschaften, 138(1916), 940-955.

Bucur, R., Breaz, D., Georgescu, L., Third Hankel determinant for a class of analytic

functions with respect to symmetric points, Acta Univ. Apulensis, 42(2015), 79-86.

Cho, N.E., Kumar, V., Kumar, S.S., Ravichandran, V., Radius problems for starlike

functions associated with sine function, Bull. Iranian Math. Soc., 45(2019), 213-232.

De-Branges, L., A proof of the Bieberbach conjecture, Acta Math., 154(1985), 137-152.

Ehrenborg, R., The Hankel determinant of exponential polynomials, Amer. Math.

Monthly, 107(2000), 557-560.

Janteng, A., Halim, S.A., Darus, M., Hankel determinant for starlike and convex functions

, Int. J. Math. Anal., 1(2007), no. 13, 619-625.

Khan, M.G., Ahmad, B., Sokol, J., Muhammad, Z., Mashwani, W.K., Chinram, R.,

Petchkaew, P., Coe cient problems in a class of functions with bounded turning associated

with sine function, Eur. J. Pure Appl. Math., 14(2021), no. 1, 53-64.

Layman, J.W., The Hankel transform and some of its properties, J. Integer Seq., 4(2001),

-11.

Libera, R.J., Zlotkiewiez, E.J., Early coe cients of the inverse of a regular convex function,

Proc. Amer. Math. Soc., 85(1982), 225-230.

Libera, R.J., Zlotkiewiez, E.J., Coe cient bounds for the inverse of a function with

derivative in P, Proc. Amer. Math. Soc., 87(1983), 251-257

Ma, W., Generalized Zalcman conjecture for starlike and typically real functions, J.

Math. Anal. Appl. 234(1999), 328-329.

MacGregor, T.H., Functions whose derivative has a positive real part, Trans. Amer.

Math. Soc., 104(1962), 532-537.

MacGregor, T.H., The radius of univalence of certain analytic functions, Proc. Amer.

Math. Soc. 14(1963), 514-520.

Mehrok, B.S., Singh, G., Estimate of second Hankel determinant for certain classes of

analytic functions, Sci. Magna, 8(2012), no. 3, 85-94.

Murugusundramurthi, G., Magesh, N., Coe cient inequalities for certain classes of analytic

functions associated with Hankel determinant, Bull. Math. Anal. Appl., 1(2009),

no. 3, 85-89.

Noor, K.I., Hankel determinant problem for the class of functions with bounded boundary

rotation, Rev. Roumaine Math. Pures Appl., 28(1983), no. 8, 731-739.

Pommerenke, C., On the coe cients and Hankel determinants of univalent functions, J.

Lond. Math. Soc., 41(1966), 111-122.

Pommerenke, C., Univalent Functions, Math. Lehrbucher, Vandenhoeck and Ruprecht,

Gottingen, 1975.

Ravichandran, V., Verma, S., Bound for the fth coe cient of certain starlike functions,

Comptes Rendus Math., 353(2015), 505-510.

Reade, M.O., On close-to-convex univalent functions, Michigan Math. J., 3(1955-56),

-62.

Shanmugam, G., Stephen, B.A., Babalola, K.O., Third Hankel determinant for starlike

functions, Gulf J. Math., 2(2014), no. 2, 107-113.

Singh, G., Hankel determinant for a new subclass of analytic functions, Sci. Magna,

(2012), no. 4, 61-65.

Singh, G., Singh, G., Hankel determinant problems for certain subclasses of Sakaguchitype

functions de ned with subordination, Korean J. Math., 30(2022), no. 1, 81-90.

Singh, G., Singh, G., Singh, G., Upper bound on fourth Hankel determinant for certain

subclass of multivalent functions, Jnanabha, 50(2020), no. 2, 122-127.

Singh, G., Singh, G., Singh, G., Fourth Hankel determinant for a subclass of analytic

functions de ned by generalized Salagean operator, Creat. Math. Inform., 31(2022), no.

, 229-240.

Zhang, H. Y., Tang, H., A study of fourth order Hankel determinant for starlike functions

connected with the sine function, J. Funct. Spaces, 2021, Article Id. 9991460, 8 pages.

Downloads

Published

2024-12-10

Issue

Section

Articles