Generalized versus classical normal derivative
Abstract
Keywords
Full Text:
PDFReferences
Brezis, H., Analyse Fonctionnelle, Masson, Paris, 1983.
Casas, E., Fernandez, L.A., A Green's formula for quasilinear elliptic operators, J. Math. Anal. Appl., 142 (1989), no. 1, 62-73.
Evans, L.C., Gariepy, R.F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
Fresse, L., Motreanu, V.V., Axiomatic Moser iteration technique, submitted.
Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24, Pitman, Boston, MA, 1985.
Kenmochi, N., Pseudomonotone operators and nonlinear elliptic boundary value problems, J. Math. Soc. Japan, 27(1975), no. 1, 121-149.
Lieberman, G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12(1988), 1203-1219.
Motreanu, D., Motreanu, V.V., Papageorgiou, N., Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
Vazquez, J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12(1984), no. 3, 191-202.
DOI: http://dx.doi.org/10.24193/subbmath.2023.1.02
Refbacks
- There are currently no refbacks.