On a singular elliptic problem with variable exponent

Francesca Faraci

Abstract


In the present note we study a semilinear elliptic Dirichlet problem involving a singular term  with variable exponent of the following type

$$
\left\{
\begin{array}{ll}
-\Delta u= \frac{f(x)}{u^{\gamma(x)} }, & \mbox{ in }\Omega, \\
u>0, & \mbox{ in }\Omega, \\
u=0, & \mbox{ on }\partial \Omega.
\end{array}
\right.
$$

Existence and uniqueness results are proved when \(f\geq 0\).


Keywords


singular elliptic problem; variable exponent; variational methods.

Full Text:

PDF

References


Agmon, S., The L_p approach to the Dirichlet problem, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13(1959), 405-448.

Bal, K., Garain, P., Mukherjee, T., On an anisotropic p-Laplace equation with variable singular exponent, Adv. Differential Equations, 26(2021), 535-562.

Boccardo, L., Orsina, L., Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Di erential Equations, 37(2010), 363-380.

Canino, A., Degiovanni, M., A variational approach to a class of singular semilinear elliptic equations, J. Convex Anal., 11(2004), 147-162.

Canino, A., Sciunzi, B., A uniqueness result for some singular semilinear elliptic equations, Commun. Contemp. Math., 18(2016), 9 pp.

Canino, A., Sciunzi, B., Trombetta, A., Existence and uniqueness for p-Laplace equations involving singular nonlinearities, NoDEA Nonlinear Di erential Equations Appl., 23(2016), 18 pp.

Carmona, J., Martinez-Aparicio, P.J., A singular semilinear elliptic equation with a variable exponent, Adv. Nonlinear Stud., 16(2016), 491-498.

Crandall, M.G., Rabinowitz, P.H., Tartar, L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2(1977), 193-222.

Faraci, F., Smyrlis, G., Three solutions for a singular quasilinear elliptic problem, Proc. Edinb. Math. Soc., 62(2019), 179-196.

Fulks, W., Maybee, J.S., A singular non-linear equation, Osaka Math. J., 12(1960), 1-19.

Giacomoni, J., Schindler, I., Takac, P., Sobolev versus Holder minimizers and global multiplicity for a singular and quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci.,

(2007), 117-158.

Godoy, T., Kaufmann, U., On Dirichlet problems with singular nonlinearity of indefinite sign, J. Math. Anal. Appl., 428(2015), 1239-1251.

Hirano, N., Saccon, C., Shioji, N., Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, 245(2008),

-2037.

Loc, N.H., Schmitt, K., Applications of sub-supersolution theorems to singular nonlinear elliptic problems, Adv. Nonlinear Stud., 11(2011), 493-524.

Oliva, F., Petitta, F., On singular elliptic equations with measure sources, ESAIM Control Optim. Calc. Var., 22(2016), 289-308.

Perera, K., Silva, E.A.B., Existence and multiplicity of positive solutions for singular quasilinear problems, J. Math. Anal. Appl., 323(2006), 1238-1252.

Zhang, Z., Critical points and positive solutions of singular elliptic boundary value problems, J. Math. Anal. Appl., 302(2005), 476-483.




DOI: http://dx.doi.org/10.24193/subbmath.2023.1.03

Refbacks

  • There are currently no refbacks.