Bernstein polynomials iterative method for weakly singular and fractional Fredholm integral equations
Abstract
Keywords
Full Text:
PDFReferences
Agarwal, R. P., Benchohra, M., Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010) 973-1033.
Allouch, C., Sablonnière, P., Sbibih, D., Tahrichi, M., Product integration methods based on discrete spline quasi-interpolants and application to weakly singular integral equations, J. Comput. Appl. Math. 233 (2010) 2855-2866
Amin, R., Alrabaiah, H., Mahariq, I., Zeb, A., Theoretical and computational results for mixed type Volterra-Fredholm fractional integral
equations, Fractals 30, no. 1 (2022) 2240035
András, S., Weakly singular Volterra and Fredholm-Volterra integral equations, Studia Univ. Babeș-Bolyai Math. 48 (3) (2003) 147-155
Atkinson, K. E., An introduction to numerical analysis, 2nd
ed., John Wiley & Sons, New York, 1989
Atkinson, K. E., The numerical solution of an Abel integral equation by a product trapezoidal method, SIAM J. Numer. Anal. 11 (1) (1974) 97-101.
Bagley, R. L., Calico, R. A., Fractional order state equations for the control of viscoelastically damped structures, J. Guid. Contr. Dynam. 14 (1991) 304-311.
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J., Fractional Calculus: Models and Numerical Methods, in: Series on Complexity, Nonlinearity and Chaos, vol. 3, World Scientific Publishers, Co., N. Jersey,
London, Singapore, 2012.
Brunner, H., The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes, Math. Comp. 45 (172) (1985) 417-437.
Brunner, H., Pedas, A., Vainikko, G., The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations, Math. Comp. 68 (227) (1999) 1079-1095.
Cao, Y., Huang, M., Liu, L., Xu, Y., Hybrid collocation methods for Fredholm integral equations with weakly singular kernels, Appl. Numer. Math. 57 (2007) 549-561
Diethelm, K., The Analysis of Fractional Differential Equations. Lecture Notes In Mathematics, vol. 2004, Springer-Verlag Berlin Heidelberg 2010.
Diogo, T., Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations, J. Comput. Appl. Math. 229 (2009) 363-372.
Du, M., Wang, Z., Hu, H., Measuring memory with order of fractional derivative, Sci. Rep. 3 (2013) 3431.
Ezzat, M. A., Sabbah, A. S., El-Bary, A. A., Ezzat, S. M., Thermoelectric viscoelastic fluid with fractional integral and derivative heat transfer, Adv. Appl. Math. Mech. 7 (2015) 528-548.
Garrappa, R., Numerical solution of fractional differential equations: a survey and software tutorial, Mathematics 2018, 6, 16
Gorenflo, R., Vessella, S., Abel Integral Equations: Analysis and Applications, in: Lecture Notes in Mathematics, vol. 1461, Springer
Verlag, Berlin, 1991.
Graham, I., Galerkin methods for second kind integral equations with singularities, Math. Comp. 39, no. 160 (1982) 519-533
Kaneko, H., Noren, R., Xu, Y., Regularity of the solution of Hammerstein equations with weakly singular kernel, Integral Equations Operator Theory 13 (1990) 660-670
Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science B.V.,
Amsterdam, 2006.
Lakshmikantham, V., Leela, S., Vasundhara, J., Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
Lorentz, G. G., Bernstein Polynomials, Toronto, Univ. Toronto
Press, 1953
Lubich, C., Runge-Kutta theory for Volterra and Abel integral equations of the second kind, Math. Comp. 41 (163) (1983) 87-102.
Maleknejad, K., Mollapourasl, R., Ostadi, A., Convergence analysis of Sinc-collocation methods for nonlinear Fredholm integral equations with a weakly singular kernel, J. Comput. Appl. Math. 278 (2015) 1-11
Maleknejad, K., Nosrati, M., Najafi, E., Wavelet Galerkin method for solving singular integral equations, Comput. Appl. Math. 31, no. 2 (2012) 373-390
Mandal, M., Nelakanti, G., Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm-Hammerstein integral equations, J. Comput. Appl. Math. 349 (2019) 114-131
Micula, S., An iterative numerical method for fractional integral equations of the second kind, J. Comput. Appl. Math. 339 (2018) 124-133.
Micula, S., A numerical method for weakly singular nonlinear Volterra integral equations of the second kind, Symmetry 2020, 12, 1862
Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
Mohammad, M., Trounev, A., Implicit Riesz wavelets based-method for solving singular fractional integro-differential equations
with applications to hematopoietic stem cell modeling, Chaos Solitons Fractals 138 (2020) 109991
Muskhelishvili, N. I., Radok, J. R. M., Singular Integral Equations:
Boundary Problems of Function Theory and their Application to Mathematical Physics, Courier Corporation, Chelmsford, 2008.
Okayama, T., Matsuo, T., Sugihara, M., Sinc-collocation methods for
weakly singular Fredholm integral equations of the second kind, J. Comput. Appl. Math. 234 (2010) 1211 1227
Podlubny, I., Fractional Differential Equation, Academic Press, San Diego, 1999
Ren, Y., Zhang, B., Qiao, H., A simple Taylor-series expansion method for a class of second kind integral equations, J. Comput. Appl. Math. 110 (1999) 15-24
Schneider, C., Product integration for weakly singular integral equations, Math. Comp. 36 (153) (1981) 207-213.
Schneider, C., Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral
Equations Operator Theory 2 (1979) 62-68
Srivastava, H. M., Dubey, V. P., Kumar, R., Singh, J., Kumar, D., Baleanu, D., An efficient computational approach for a fractional-order biological population model with carrying capacity, Chaos Solitons Fractals
(2020) 109880.
Torvik, P. J., Bagley, R. L., On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1984) 294-298.
Usta, F., Numerical analysis of fractional Volterra integral equations via Bernstein approximation method, J. Comput. Appl. Math. 384 (2021) 113198.
Wu, G. C., Baleanu, D., Variational iteration method for fractional calculus - a universal approach by Laplace transform, Adv. Differential Equations 2013 (18) (2013) 1-9.
Yang, Y., Tang, Z., Huang, Y., Numerical solutions for Fredholm integral equations of the second kind with weakly singular kernel using spectral collocation method, Appl. Math. Comput. 349 (2019) 314-324
Young, A., Approximate product-integration, Proc. R. Soc. Lond. Ser. A, 224 (1954) 552-561
Yousefi, S. A., Numerical solution of Abel's integral equation by using Legendre wavelets, Appl. Math. Comput. 175 (2006) 574-580.
Yousefi, A., Javadi, S., Babolian, E., A computational approach for solving fractional integral equations based on Legendre collocation method, Math. Sciences 13 (2019) 231-240.
DOI: http://dx.doi.org/10.24193/subbmath.2024.3.13
Refbacks
- There are currently no refbacks.