Extension operators and Janowski starlikeness with complex coefficients

Andra Manu

Abstract


In this paper, we obtain certain generalizations of some results from [13] and [14]. Let \(\Phi_{n, \alpha, \beta}\) be the extension operator introduced in [7] and let \(\Phi_{n, Q}\) be the extension operator introduced in [16]. Let \(a \in \mathbb{C}\), \(b \in \mathbb{R}\) be such that \(|1-a| < b \leq {\rm Re}\  a\). We consider the Janowski classes \(S^*(a,b, \mathbb{B})\) and \(\mathcal{A} S^*(a,b, \mathbb{B})\) with complex coefficients introduced in [4]. In the case \(n=1\), we denote \(S^*(a,b, \mathbb{B}^1)\) by \(S^*(a,b)\) and \(\mathcal{A} S^*(a,b, \mathbb{B}^1)\) by \(\mathcal{A} S^*(a,b)\). We shall prove that the following preservation properties concerning the extension operator \(\Phi_{n, \alpha, \beta}\) hold: \(\Phi_{n, \alpha, \beta} (S^*(a,b)) \subseteq S^*(a,b, \mathbb{B})\), \(\Phi_{n, \alpha, \beta} (\mathcal{A} S^*(a,b)) \subseteq \mathcal{A} S^*(a,b, \mathbb{B})\). Also, we prove similar results for the extension operator \(\Phi_{n, Q}\) : \(\Phi_{n, Q}(S^*(a,b)) \subseteq S^*(a,b, \mathbb{B})\),  \(\Phi_{n, Q}(\mathcal{A} S^*(a,b)) \subseteq \mathcal{A} S^*(a,b, \mathbb{B}))\).

Keywords


\(g\)-Loewner chain; \(g\)-parametric representation; \(g\)-starlikeness; Janowski starlikeness; Janowski almost starlikeness; extension operator

Full Text:

PDF

References


bibitem{TChirila} Chirilu a, T., emph{An extension operator associated with certain $g$-Loewner chains}, Taiwanese J. Math., textbf{17}(2013), no. 5, 1819-1837.

bibitem{TChirila3} Chirilu a, T., emph{Analytic and geometric properties associated with some extension operators}, Complex Var. Elliptic Equ., textbf{59}(2014), no. 3, 427-442.

bibitem{PCurt2} Curt, P., emph{Janowski starlikeness in several complex variables and complex Hilbert spaces}, Taiwanese J. Math., textbf{18}(2014), no. 4, 1171-1184.

bibitem{PCurt4} Curt, P., emph{Janowski subclasses of starlike mappings}, Stud. Univ. Babec s-Bolyai Math., textbf{67}(2022), no. 2, 351–360.

bibitem{GrahamHamadaKohr2} Graham, I., Hamada, H., Kohr, G., emph{Parametric representation of univalent mappings in several complex variables}, Canadian J. Math., textbf{54}(2002), no. 2, 324-351.

bibitem{GrahamHamadaKohrKohr} Graham, I., Hamada, H., Kohr, G., Kohr, M., emph{$g$-Loewner chains, Bloch functions and extension operators in complex Banach spaces}, Anal. Math. Phys., textbf{10}(2020), no. 5, Paper No. 5, 28 pp.

bibitem{GrahamHamadaKohrSuffridge} Graham, I., Hamada, H., Kohr, G., Suffridge, T.J., emph{Extension operators for locally univalent mappings}, Michigan Math. J., textbf{50}(2002), no. 1, 37–55.

bibitem{GrahamKohr} Graham, I., Kohr, G., emph{Geometric function theory in one and higher dimensions}, Marcel Dekker Inc., 2003.

bibitem{GrahamKohrKohr} Graham, I., Kohr, G., Kohr, M., emph{Loewner chains and parametric representation in several complex variables}, J. Math. Anal. Appl., textbf{281}(2003), no. 2, 425-438.

bibitem{GKohr3} Kohr, G., emph{Loewner chains and a modification of the Roper-Suffridge extension operator}, Mathematica, textbf{48(71)}(2006), no. 1, 41–48.

bibitem{Liu} Liu, X., emph{The generalized Roper-Suffridge extension operator for some biholomorphic mappings}, J. Math. Anal. Appl., textbf{324}(2006), no. 1, 604-614.

bibitem{LiuLiu} Liu, X.-S., Liu, T.-S., emph{The generalized Roper-Suffridge extension operator for spirallike mappings of type $beta$ and order $alpha$}, Chin. Ann. Math. Ser. A., textbf{27}(2006), no. 6, 789-798.

bibitem{Manu1} Manu, A., emph{Extension Operators Preserving Janowski Classes of Univalent Functions}, Taiwanese J. Math., textbf{24}(2020), no. 1, 97-117.

bibitem{Manu2} Manu, A., emph{The Muir extension operator and Janowski univalent functions}, Complex Var. Elliptic Equ., textbf{65}(2020), no. 6, 897-919.

bibitem{Muir2} Muir Jr., J.R., emph{Extensions of Abstract Loewner Chains and Spirallikeness}, J. Geom. Anal., textbf{32}(2022), no. 7, Paper No. 192, 46 pp.

bibitem{Muir0} Muir Jr., J.R., emph{A modification of the Roper-Suffridge extension operator}, Comput. Methods Funct. Theory, textbf{5}(2005), no. 1, 237-251.

bibitem{Pfaltzgraff1} Pfaltzgraff, J.A., emph{Subordination chains and univalence of holomorphic mappings in $mathbb{C}^n$}, Math. Ann., textbf{210}(1974), 55–68.

bibitem{PfaltzgraffSuffridge1} Pfaltzgraff, J.A., Suffridge, T.J., emph{An extension theorem and linear invariant families generated by starlike maps}, Ann. Univ. Mariae Curie-Sklodowska, Sect. A 53, (1999), 193-207.

bibitem{RoperSuffridge} Roper, K., Suffridge, T.J., emph{Convex mappings on the unit ball of $mathbb{C}^n$}, J. Anal. Math., textbf{65}(1995), 333-347.

bibitem{Suffridge2} Suffridge, T.J., emph{Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions}, Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), textbf{599}(1977), 146-159.

bibitem{WangLiu} Wang, J.F., Liu, T.S., emph{A modified Roper–Suffridge extension operator for some holomorphic mappings}, Chinese Ann. Math. Ser. A, textbf{31}(2010), no. 4, 487-496.




DOI: http://dx.doi.org/10.24193/subbmath.2023.2.07

Refbacks

  • There are currently no refbacks.