Extension operators and Janowski starlikeness with complex coefficients
DOI:
https://doi.org/10.24193/subbmath.2023.2.07Keywords:
\(g\)-Loewner chain, \(g\)-parametric representation, \(g\)-starlikeness, Janowski starlikeness, Janowski almost starlikeness, extension operatorAbstract
In this paper, we obtain certain generalizations of some results from [13] and [14]. Let \(\Phi_{n, \alpha, \beta}\) be the extension operator introduced in [7] and let \(\Phi_{n, Q}\) be the extension operator introduced in [16]. Let \(a \in \mathbb{C}\), \(b \in \mathbb{R}\) be such that \(|1-a| < b \leq {\rm Re}\ a\). We consider the Janowski classes \(S^*(a,b, \mathbb{B})\) and \(\mathcal{A} S^*(a,b, \mathbb{B})\) with complex coefficients introduced in [4]. In the case \(n=1\), we denote \(S^*(a,b, \mathbb{B}^1)\) by \(S^*(a,b)\) and \(\mathcal{A} S^*(a,b, \mathbb{B}^1)\) by \(\mathcal{A} S^*(a,b)\). We shall prove that the following preservation properties concerning the extension operator \(\Phi_{n, \alpha, \beta}\) hold: \(\Phi_{n, \alpha, \beta} (S^*(a,b)) \subseteq S^*(a,b, \mathbb{B})\), \(\Phi_{n, \alpha, \beta} (\mathcal{A} S^*(a,b)) \subseteq \mathcal{A} S^*(a,b, \mathbb{B})\). Also, we prove similar results for the extension operator \(\Phi_{n, Q}\) : \(\Phi_{n, Q}(S^*(a,b)) \subseteq S^*(a,b, \mathbb{B})\), \(\Phi_{n, Q}(\mathcal{A} S^*(a,b)) \subseteq \mathcal{A} S^*(a,b, \mathbb{B}))\).References
bibitem{TChirila} Chirilu a, T., emph{An extension operator associated with certain $g$-Loewner chains}, Taiwanese J. Math., textbf{17}(2013), no. 5, 1819-1837.
bibitem{TChirila3} Chirilu a, T., emph{Analytic and geometric properties associated with some extension operators}, Complex Var. Elliptic Equ., textbf{59}(2014), no. 3, 427-442.
bibitem{PCurt2} Curt, P., emph{Janowski starlikeness in several complex variables and complex Hilbert spaces}, Taiwanese J. Math., textbf{18}(2014), no. 4, 1171-1184.
bibitem{PCurt4} Curt, P., emph{Janowski subclasses of starlike mappings}, Stud. Univ. Babec s-Bolyai Math., textbf{67}(2022), no. 2, 351–360.
bibitem{GrahamHamadaKohr2} Graham, I., Hamada, H., Kohr, G., emph{Parametric representation of univalent mappings in several complex variables}, Canadian J. Math., textbf{54}(2002), no. 2, 324-351.
bibitem{GrahamHamadaKohrKohr} Graham, I., Hamada, H., Kohr, G., Kohr, M., emph{$g$-Loewner chains, Bloch functions and extension operators in complex Banach spaces}, Anal. Math. Phys., textbf{10}(2020), no. 5, Paper No. 5, 28 pp.
bibitem{GrahamHamadaKohrSuffridge} Graham, I., Hamada, H., Kohr, G., Suffridge, T.J., emph{Extension operators for locally univalent mappings}, Michigan Math. J., textbf{50}(2002), no. 1, 37–55.
bibitem{GrahamKohr} Graham, I., Kohr, G., emph{Geometric function theory in one and higher dimensions}, Marcel Dekker Inc., 2003.
bibitem{GrahamKohrKohr} Graham, I., Kohr, G., Kohr, M., emph{Loewner chains and parametric representation in several complex variables}, J. Math. Anal. Appl., textbf{281}(2003), no. 2, 425-438.
bibitem{GKohr3} Kohr, G., emph{Loewner chains and a modification of the Roper-Suffridge extension operator}, Mathematica, textbf{48(71)}(2006), no. 1, 41–48.
bibitem{Liu} Liu, X., emph{The generalized Roper-Suffridge extension operator for some biholomorphic mappings}, J. Math. Anal. Appl., textbf{324}(2006), no. 1, 604-614.
bibitem{LiuLiu} Liu, X.-S., Liu, T.-S., emph{The generalized Roper-Suffridge extension operator for spirallike mappings of type $beta$ and order $alpha$}, Chin. Ann. Math. Ser. A., textbf{27}(2006), no. 6, 789-798.
bibitem{Manu1} Manu, A., emph{Extension Operators Preserving Janowski Classes of Univalent Functions}, Taiwanese J. Math., textbf{24}(2020), no. 1, 97-117.
bibitem{Manu2} Manu, A., emph{The Muir extension operator and Janowski univalent functions}, Complex Var. Elliptic Equ., textbf{65}(2020), no. 6, 897-919.
bibitem{Muir2} Muir Jr., J.R., emph{Extensions of Abstract Loewner Chains and Spirallikeness}, J. Geom. Anal., textbf{32}(2022), no. 7, Paper No. 192, 46 pp.
bibitem{Muir0} Muir Jr., J.R., emph{A modification of the Roper-Suffridge extension operator}, Comput. Methods Funct. Theory, textbf{5}(2005), no. 1, 237-251.
bibitem{Pfaltzgraff1} Pfaltzgraff, J.A., emph{Subordination chains and univalence of holomorphic mappings in $mathbb{C}^n$}, Math. Ann., textbf{210}(1974), 55–68.
bibitem{PfaltzgraffSuffridge1} Pfaltzgraff, J.A., Suffridge, T.J., emph{An extension theorem and linear invariant families generated by starlike maps}, Ann. Univ. Mariae Curie-Sklodowska, Sect. A 53, (1999), 193-207.
bibitem{RoperSuffridge} Roper, K., Suffridge, T.J., emph{Convex mappings on the unit ball of $mathbb{C}^n$}, J. Anal. Math., textbf{65}(1995), 333-347.
bibitem{Suffridge2} Suffridge, T.J., emph{Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions}, Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), textbf{599}(1977), 146-159.
bibitem{WangLiu} Wang, J.F., Liu, T.S., emph{A modified Roper–Suffridge extension operator for some holomorphic mappings}, Chinese Ann. Math. Ser. A, textbf{31}(2010), no. 4, 487-496.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.