Modified inertia Halpern method for split null point problem in reflexive Banach spaces
Abstract
Full Text:
PDFReferences
Abass, H.A., Aremu, K.O., Jolaoso, L.O., Mewomo, O.T., An inertial forward-backward splitting method for approximating solutions of certain optimization problem, J. Nonlinear Funct. Anal., 2020, (2020), Article ID 6.
Abass, H.A., Godwin, G.C., Narain, O.K., Darvish, V., Inertial extragradient method for solving variational inequality and fixed point problems of a Bregman demigeneralized
mapping in a reflexive Banach spaces, Numerical Functional Analysis and Optimization, (2022), 1-28.
Abass, H.A., Izuchukwu, C., Mewomo, O.T., Dong, Q.L., Strong convergence of an inertial forward-backward splitting method for accretive operators in real Banach space, Fixed Point Theory, 20(2020), no. 2, 397-412.
Abass, H.A., Mebawondu, A.A., Narain, O.K., Kim, J.K., Outer approximation method for zeros of sum of monotone operators and fixed point problems in Banach spaces, Nonlinear Funct. Anal. and Appl., 26(2021), no. 3, 451-474.
Afassinou, K., Narain, O.K., Otunuga, O.E., Iterative algorithm for approximating solutions of split monotone variational inclusion, variational inequality and fixed point problems in real Hilbert spaces, Nonlinear Funct. Anal. and Appl., 25(2020), no. 3, 491-510.
Ansari, Q.H., Rehan, A., Iterative methods for generalized split feasibility problems in Banach spaces, Carpathian J. Math., 33(2017), no. 1, 9-26.
Barbu, V., Nonlinear Differential Equations of Monotone Types Nonlinear Differential in Banach Spaces, Springer, New York, 2010.
Bauschke, H.H., Borwein, J.M., Legendre functions and method of random Bregman functions, J. Convex Anal., 4(1997), 27-67.
Bauschke, H.H., Borwein, J.M., Combettes, P.L., Essentially smoothness, essentially strict convexity and Legendre functions in Banach spaces, Commun. Contemp. Math., 3(2001), 615-647.
Bello, J.Y., Shehu, Y., An iterative method for split inclusion problem without prior knowledge of operator norm, J. Fixed Point Theory Appl., 19(2017), no. 3.
Bregman, L.M., The relaxation method for finding the common point of convex sets and its application to solution of problems in convex programming, U.S.S.R Comput. Math. Phys., 7(1967), 200-217.
Bryne, C., Iterative oblique projection onto convex subsets and the split feasibility problems, Inverse Probl., 18(2002), 441-453.
Bryne, C., Censor, Y., Gibali, A., The split common null point problem, J. Nonlinear Convex Anal., 13(2012), 759-775.
Burwein, M., Reich, S., Sabach, S., A characterization of Bregman uniformly nonexpansive operators using a new monotonicity concept, J. Nonlinear Convex Anal., 12(2011), 161-184.
Butnariu, D., Iusem, A.N., Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers, Dordrecht, 2000.
Butnariu, D., Resmerita, E., Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstract and Applied Analysis, 2006(2006), Art. ID 84919, 1-39.
Censor, Y., Elfving, T., A multiprojection algorithms using Bregman projections in a product space, Numer. Algor., 8(1994), 221-239.
Censor, Y., Segal, A., The split common fixed point problem for directed operators, J. Convex Anal., 16(2009), no. 2, 587-600.
Cholamjiak, P., Sunthrayuth, P., A Halpern-type iteration for solving the split feasibility problem and fixed point problem of Bregman relatively nonexpansive semigroup in Banach spaces, Filomat, 32(2018), no. 9, 3211-3227.
Gazmeh, H., Naraghirad, E., The split common null point problem for Bregman generalized resolvents in two Banach spaces, Optimization, (2020), DOI:10.1080/02331934.2020.1751157.
Iiduka, H., Acceleration method for convex optimization over the xed point set of a nonexpansive mappings, Math. Prog. Series A, 149(2015), 131-165.
Izuchukwu, C., Okeke, C.C., Isiogugu, F.O., A viscosity iterative technique for split variational inclusion and fixed point problems between a Hilbert and a Banach space, J. Fixed Point Theory Appl., 20(157)(2018).
Jailoka, P., Suantai, S., Split null point problems for demicontractive multivalued mappings, Mediterr. J. Math., 15(2018), 1-19.
Kazmi, K.R., Ali, R., Yousuf, S., Generalized equilibrium and fixed point problems for Bregman relatively nonexpansive mappings in Banach spaces, J. Fixed Point Theory Appl., (2018), 20:151.
Kinderlehrer, D., Stampacchia, G., An Introduction to Variational Inequalities and Their Applications, Society for Industrial and Applied Mathematics, Philadelphia, 2000.
Lions, P.L., Mercier, B., Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16(1979), 964-979.
Mainge, P.E,, Viscosity approximation process for quasi nonexpansive mappings in Hilbert space, Comput. Math. Appl., 59(2010), 74-79.
Martin Marquez, V., Reich, S., Sabach, S., Bregman strongly nonexpansive operators in reflexive Banach spaces, J. Math. Anal. Appl., 400(2013), 597-614.
Mouda , A., A note on the split common fixed point problem for quasi-nonexpansive operator, Nonlinear Anal., 74(2011), 4083-4087.
Ogbuisi, F.U., Izuchukwu, C., Approximating a zero of sum of two monotone operators which solves a fixed point problem in reflexive Banach spaces, Numer. Funct. Anal., 40(13)(2019), DOI:10.1080/01630563.2019.1628050.
Ogbuisi, F.U., Mewomo, O.T., Iterative solution of split variational inclusion problem in real Banach spaces, Afr. Mat., 28(2017), 295-309.
Okeke, C.C., Izuchukwu, C., Strong convergence theorem for split feasibility problems and variational inclusion problems in real Banach spaces, Rendiconti de Circolo Matematico di Palermo, Series 2, doi.10.1007/s12215-020-00508-3.
Oyewole, O.K., Abass, H.A., Mewomo, O.T., A strong convergence algorithm for a fixed point constraint split null point problem, Rendiconti de Circolo Matematico di Palermo, Series 2, (2020), 1-20.
Reich, S., Sabach, S., A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., 10(2009), 471-485.
da Reich, S., Sabach, G., Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, J. Nonlinear Convex Anal., 10(2009), 471-485.
Reich, S., Sabach, S., Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., 31(2010), 24-44.
Rockafellar, R.T., Characterization of the subdifferentials of convex functions, Pac. J. Math., 17(1966), 497-510.
Rockafellar, R.T., On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149(1970), 75-88.
Schopfer, F., Schuster, T., Louis, A.K., An iterative regularization method for the solution of the split feasibilty problem in Banach spaces, Inverse Probl., 24(5)(2008), 055008.
Shehu, Y., Convergence results of forward-backward algorithms for sum of monotone
operators in Banach spaces, Results Math., 74(2019), 138.
Shehu, Y., Ogbuisi, F.U., Approximation of common fixed points of left Bregman strongly nonexpansive mappings and solutions of equilibrium problems, J. Appl. Anal., 21(2)(2015), 63-77, DOI: 10.1515/jaa-2015-0007.
Shehu, Y., Ogbuisi, F.U., An iterative method for solving split monotone variational inclusion and fixed point problem, RACSAM, 110(2016), 503-518.
Shehu, Y., Ogbuisi, F.U., Iyiola, O.S., Convergence analysis of an iterative algorithm for fixed point problems and split feasibility problems in certain Banach spaces, Optimization, 65(2016), 299-323.
Sunthrayuth, P., Pholasa, N., Cholamjiak, P., Mann-type algorithms for solving the monotone inclusion problem and the fixed point problem in reflexive Banach spaces, Ricerche di Matematica, (2021), 1-28.
Takahashi, S., Takahashi, W., The split common null point problem and the shrinking projection method in Banach spaces, Optimizati+AG2on, 65(2016), no. 2, 281-287.
Tie, J.V., Convex Analysis: An Introductory Text, Wiley, New York, 1984.
Timnak, S., Naraghirad, E., Hussain, N., Strong convergence of Halpern iteration for products of finitely many resolvents of maximal monotone operators in Banach spaces, Filomat, 31(15)(2017), 4673-4693.
Tseng, P., A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38(2000), 431-446.
Xia, F.Q., Huang, N.J., Variational inclusions with a general H-monotone operators in Banach spaces, Comput. Math. Appl., 54(2010), no. 1, 24-30.
Xu, H.K., Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2)(2002), no. 1, 240-256.
Zalinescu, C., Convex Analysis in General Vector Spaces, World Scientific Publishing o. Inc., River Edge NJ, 2002.
DOI: http://dx.doi.org/10.24193/subbmath.2024.3.09
Refbacks
- There are currently no refbacks.