Hankel and symmetric Toeplitz determinants for Sakaguchi starlike functions
Abstract
In this paper, we consider the class of starlike functions with respect to symmetric points which are also known as Sakaguchi starlike functions. We determine best possible bounds on Zalcman conjecture
$\vert a_n^2-a_{2n-1}\vert$ and generalized Zalcman conjecture $\vert a_ma_n-a_{m+n-1}\vert$ for $n=2$ and $n=4$, $m=2$, respectively for such functions. Further, we compute estimate on third order and fourth order Hankel determinants. As well, we also obtain estimates on third and fourth symmetric Toeplitz determinants.
Keywords
Full Text:
PDFReferences
Ahuja, O.P., Khatter, K., Ravichandran,V., Toeplitz determinants associated with Ma-Minda classes of starlike and convex functions, Iran. J. Sci. Technol. Trans. A Sci, 45(2021), no. 6, 2021–2027.
Ahuja, O.P., Khatter, K., Ravichandran,V., Symmetric Toeplitz determinants associated with a linear combination of some geometric expressions, Honam Math. J., 43(2021), no. 3, 465–481.
Ali, R.M., Jain, N.K., Ravichandran, V., Bohr radius for classes of analytic functions, Results Math, 74(2019), no. 4, Paper No. 179, 13 pp
Anand, S., Jain, N. K., Kumar, S., Certain Estimates of Normalized Analytic Functions, Math. Slovaca, 72(2022), no. 1, 85–102.
Arif, M., Rani, L., Raza, M., Zaprawa, P., Fourth Hankel determinant for the family of functions with bounded turning, Bull. Korean Math. Soc, 55(2018), no. 6, 1703–1711.
Babalola, K.O., On H3(1) Hankel determinant for some classes of univalent functions, Inequal. Theory App., 6(2010), 1-7.
Brown, J.E., Tsao, A., On the Zalcman conjecture for starlike and typically real functions, Math. Z., 191(1986), no. 3, 467–474.
Carlson, F., Sur les coefficients d’une fonction born´ee dans le cercle unit´e, Ark. Mat. Astr. Fys., 27A(1940), no. 1, 8 pp.
Cho, N.E., Kumar, V., Initial coefficients and fourth Hankel determinant for certain analytic functions, Miskolc Math. Notes, 21(2020), no. 2, 763–779.
Cho, N.E., Kumar, S., Kumar, V., Hermitian-Toeplitz and Hankel determinants for certain starlike functions, Asian-Eur. J. Math. (2021).
https://doi.org/10.1142/S1793557122500425.
Goodman, A.W., Univalent functions. Vol. II. Mariner Publishing Co., Inc., Tampa, FL, (1983).
Hayman, W.K., On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc. (3), 18(1968), 77–94.
Janteng, A., Halim, S.A., Darus, M., Coefficient inequality for a function whose derivative has a positive real part, JIPAM. J. Inequal. Pure Appl. Math., 7(2006), no. 2, Article 50, 5 pp.
Kowalczyk, B., Lecko, A., Lecko, M., Sim,Y.J., The sharp bound of the third Hankel determinant for some classes of analytic functions, Bull. Korean Math. Soc., 55(2018), no. 6, 1859–1868.
Kowalczyk, B., Lecko, A., Sim, Y.J., The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc., 97(2018), no. 3, 435–445.
Krishna, D.V., Venkateswarlu, B., RamReddy,T., Third Hankel determinant for starlike and convex functions with respect to symmetric points, Ann. Univ. Mariae Curie-Sk�lodowska Sect. A, 70(2016), no. 1, 37–45.
Krishna, D. V., RamReddy, T., Second Hankel determinant for the class of Bazilevic functions, Stud. Univ. Babe¸s-Bolyai Math., 60(2015), no. 3, 413–420.
Kumar, S., C¸etinkaya, A., Coefficient inequalities for certain starlike and convex functions, Hacet. J. Math. Stat., 51(2022), no. 1, 156–171.
Kumar, S., Ravichandran, V., Verma, S., Initial coefficients of starlike functions with real coefficients, Bull. Iranian Math. Soc., 43(2017), no. 6, 1837–1854.
Kumar, V., Kumar, S., Bounds on Hermitian-Toeplitz and Hankel determinants for strongly starlike functions, Bol. Soc. Mat. Mex. (3), 27(2021), no. 2, Paper No. 55, 16 pp.
Kumar, S., Ravichandran, V., Functions defined by coefficient inequalities, Malays. J. Math. Sci., 11(2017), no. 3, 365–375.
Kumar, V., Kumar, S., Ravichandran, V., Third Hankel determinant for certain classes of analytic functions, in Mathematical analysis. I. Approximation theory, 223–231, Springer Proc. Math. Stat., 306, Springer, Singapore.
Lecko, A., Sim, Y.J., ´Smiarowska, B., The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory 13(2019), no. 5, 2231–2238.
Ma, W.C., The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104(1988), no. 3, 741–744.
Ma, W., Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., 234(1999), no. 1, 328–339.
Obradovi´c, M., Tuneski, N., Zalcman and generalized Zalcman conjecture for the class U, Novi Sad J. Math., 2021, https://doi.org/10.30755/NSJOM.12436.
Pommerenke, Ch., On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., 41(1966), 111–122.
Pommerenke, Ch., On the Hankel determinants of univalent functions, Mathematika, 14(1967), 108–112.
Prajapat, J.K., Bansal, D., Maharana, S., Bounds on third Hankel determinant for certain classes of analytic functions, Stud. Univ. Babe¸s-Bolyai Math., 62(2017), no. 2, 183–195.
Prokhorov, D.V., Szynal, J., Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Sk�lodowska Sect. A, 35(1981), 125–143.
Ravichandran, V., Verma, S., Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris, 353(2015), no. 6, 505–510.
Ravichandran, V., Verma, S., Generalized Zalcman conjecture for some classes of analytic functions, J. Math. Anal. Appl., 450(2017), no. 1, 592–605.
Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan, 11(1959), 72–75.
Vasudevarao, A., Pandey, A., The Zalcman conjecture for certain analytic and univalent functions, J. Math. Anal. Appl., 492(2020), no. 2, 124466, 12 pp.
Venkateswarlu, B., Rani, N., Third Hankel determinant for reciprocal of bounded turning function has a positive real part of order alpha, Stud. Univ. Babe¸s-Bolyai Math., 62(2017), no. 3, 331–340.
Zaprawa, P., Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math., 14(2017), no. 1, Art. 19, 10 pp.
Zaprawa, P., Obradovi´c, M., Tuneski, N., Third Hankel determinant for univalent starlike functions, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 115(2021), no. 2, Paper No. 49, 6 pp.
Zhang, H.Y., Srivastava, R., Tang, H., Third-order Hankel and Toeplitz determinants for starlike functions connected with the sine function, Mathematics, 7(2019), Paper No. 404, 10 pp.
Zhang, H.Y., Tang, H., Fourth Toeplitz determinants for starlike functions defined by using the sine function, J. Funct. Spaces, (2021) Art. ID 4103772, 7pp.
DOI: http://dx.doi.org/10.24193/subbmath.2024.3.04
Refbacks
- There are currently no refbacks.