Some aspects of a coupled system of nonlinear integral equations
Abstract
Keywords
Full Text:
PDFReferences
Abbas, M., Aydi, H.,
Well-posedness of a common coupled fixed point problem,
Communications in Mathematics and Applications, textbf{9}(2018), no. 1, 27--40.
Babu, G.V.R., Kameswari, M.V.R.,
Coupled fixed points for generalized contractive maps with rational expressions in partially ordered metric spaces,
Journal of Advanced Research in Pure Mathematics, textbf{6}(2014), 43--57.
Baker, M., Zachariasen, F.,
Coupled integral equations for the nucleon and pion electromagnetic form factors,
Phys. Rev., textbf{119}(1960), 438--448.
Berinde, V.,
Error estimates for approximating fixed points of quasi contractions,
Gen. Math., textbf{13}(2005), no. 2, 23--34.
Bota, M.F., Karap{i}nar, E., Mlec{s}nic{t}e, O.,
Ulam-Hyers stability results for fixed point problems via $alpha-psi$-contractive mapping in $b$-metric space,
Abstr. Appl. Anal., textbf{2013}(2013), Article ID 825293, 6 pages.
Chifu, C., Petruc{s}el, G.,
Coupled fixed point results for $(varphi,G)$-contractions of type (b) in b-metric spaces endowed with a graph,
J. Nonlinear Sci. Appl., textbf{10}(2017), 671--683.
Choudhury, B.S., Gnana Bhaskar, T., Metiya, N., Kundu, S.,
Existence and stability of coupled fixed point sets for multi-valued mappings,
Fixed Point Theory, textbf{22}(2021), no. 2, 571--586.
Choudhury, B.S., Metiya, N., Kundu, S.,
Existence, data-dependence and stability of coupled fixed point sets of some multivalued operators,
Chaos, Solitons and Fractals, textbf{133}(2020), 109678.
Ciepli'{n}ski, K.,
Applications of fixed point theorems to the Hyers-Ulam stability of functional equations -- A suvey,
Ann. Funct. Anal., textbf{3}(2012), no. 1, 151--164.
Esp'{i}nola, R., Petruc{s}el, A.,
Existence and data dependence of fixed points for multivalued operators on gauge spaces,
J. Math. Anal. Appl., textbf{309}(2005), no. 2, 420--432.
Friedman, M., Colonias, J.,
On the coupled differential-integral equations for the solution of the general magnetostatic problem,
IEEE Transactions on Magnetics, textbf{18}(1982), no. 2, 336--339.
Gauthier, A., Knight, P.A., McKee, S.,
The Hertz contact problem, coupled Volterra integral equations and a linear complementarity problem,
J. Comput. Appl. Math., textbf{206}(2007), 322--340.
Gnana Bhaskar, T., Lakshmikantham, V.,
Fixed point theorems in partially ordered metric spaces and applications,
Nonlinear Anal., textbf{65}(2006), 1379--1393.
Guo, D., Lakshmikantham, V.,
Coupled fixed points of nonlinear operators with applications,
Nonlinear Anal., textbf{11}(1987), 623--632.
Harjani, J., L'{o}pez, B., Sadarangani, K.,
Fixed point theorems for mixed monotone operators and applications to integral equations,
Nonlinear Anal., textbf{74}(2011), 1749--1760.
Hazarika, B., Arab, R., Kumam, P.,
Coupled fixed point theorems in partially ordered metric spaces via mixed $g$-monotone property,
J. Fixed Point Theory Appl., textbf{21}(2019), no. 1.
Hyers, D.H.,
On the stability of the linear functional equation,
Proc. Natl. Acad. Sci. USA, textbf{27}(1941), no. 4, 222--224.
Kim, G.H., Shin, H.Y.,
Hyers-Ulam stability of quadratic functional euations on divisible square-symmetric groupoid,
Int. J. Pure Appl. Math., textbf{112}(2017), no. 1, 189--201.
Kutbi, M.A., Sintunavarat, W.,
Ulam-Hyers stability and well-posedness of fixed point problems for $alpha - lambda$-contraction
mapping in metric spaces,
Abstr. Appl. Anal., textbf{2014}(2014), Article ID 268230, 6 pages.
Mennig, J., "{O}zic{s}ik, M.N.,
Coupled integral equation approach for solving melting or solidification,
Int. J. Heat Mass Transfer, textbf{28}(1985), no. 8, 1481--1485.
Phiangsungnoen, S., Kumam, P.,
Generalized Ulam-Hyers stability and well-posedness for fixed point equation via $alpha$-admissibility,
J. Inequal. Appl., textbf{2014}(2014), no. 418.
Popa, V.,
Well-posedness of fixed point problem in orbitally complete metric spaces,
Stud. Cercet. Stiint. Ser. Mat., textbf{16}(2006), 209--214.
Rassias, T.M.,
On the stability of the linear mappings in Banach spaces,
Proc. Amer. Math. Soc., textbf{72}(1978), 297--300.
Rassias, T.M.,
Isometries and approximate isometries, IJMMS, textbf{25}(2001), no. 2, 73--91.
Rus, I.A.,
Remarks on Ulam stability of the operatorial equations,
Fixed Point Theory, textbf{10}(2009), no. 2, 305--320.
Sintunavarat, W.,
Generalized Ulam-Hyers stability, well-posedness and limit shadowing of fixed point problems
for $alpha-beta$-contraction mapping in metric spaces,
The Scientific World Journal, textbf{2014}(2014), Article ID 569174, 7.
Ulam, S.M.,
Problems in Modern Mathematics, Wiley, New York, 1964.
DOI: http://dx.doi.org/10.24193/subbmath.2024.4.16
Refbacks
- There are currently no refbacks.