Existence and Ulam stability of initial value problems for perturbed functional fractional q-difference equations
Abstract
By applying the Burton and Kirk xed point theorem, we discuss the existence of so-
lutions for a class of initial value problems for perturbed functional fractional q-dierence
equations involving the q-derivative in the Caputo sense. Further, we present Ulam-Hyers
and Ulam-Hyers-Rassias stabilities results by using direct analysis methods. Finally, we
give two examples illustrating the results.
Full Text:
PDFReferences
Abbas, S., Benchohra, M., Graef, J.R, Henderson, J., Implicit Fractional Differential and Integral Equations: Existence and Stability, Gruyter, Berlin, 2018.
Abbas, S., Benchohra, M., Henderson, J., Existence and oscillation for coupled fractional q-difference systems, J. Fract. Calc. Appl., 12(2021), no. 1, 143-155.
Abbas, S., Benchohra, M., Laledj, N., Zhou, Y., Exictence and Ulam Stability for implicit fractional q-difference equation, Adv. Difference Equation, 2019(2019), no. 480, 1-12.
Adams, C.R., On the linear ordinary q-difference equation, Ann. Math., 30(1928-1929), no. 1/4, 195-205.
Agarwal, R., Certain fractional q-integrals and q-derivatives, Math. Proc. Cambridge Philos. Soc., 66(1969), 365-370.
Ahmad, B., Ntouyas, S.K, Purnaras, I.K, Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Difference Equation, 2012(2012), no. 140, 1-15.
Ahmad, B., Ntouyas, S.K, Tariboon, J., Quantum Calculus: New Concepts, Impulsive IVPs and BVPs, Inequalities, Trends Abstr. Appl. Anal., 4, World Scientific, Hackensack, 2016.
Allouch, N., Graef, J.R. and Hamani, S., Boundary value problem for fractional q-difference equations with integral conditions in Banach space, Fractal Fract., 6(2022), no. 5, 1-11.
Allouch, N., Hamani, S., Boundary value problem for fractional q-di fference equations in Banach space, Rocky Mountain J. Math., 53(2023), no. 4, 1001-1010.
Allouch, N., Hamani, S., Henderson, J., Boundary value problem for fractional q-difference equations, Nonlinear Dyn. Syst. Theory, 24(2024), no. 2, 111-122.
Al-Salam, W., Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc., 15(1966-1967), no. 2, 135-140.
Annaby, M.H., Mansour, Z.S., q-Fractional Calculus and Equations, Lect. Notes Math., 2056, Springer, Heidelberg, 2012.
Belarbi, A., Benchohra, M., Hamani, S., Ntouyas, S.K, Perturbed functional differential equation with fractional order, Commun. Appl. Anal., 11(2007), 429-440.
Burton, T.A., Kirk, C., A xed point theorem of Krasnoselskii-Schaefer type, Math. Nachr., 189(1998), 423-431.
Carmichael, R.D., The general theory of linear q-difference equations, Amer. J. Math., 34(1912), no. 2, 147-168.
Gasper, G., Rahman, M., Basic Hypergeometric Series, Encyclopedia Math. Appl., 96, Cambridge University Press, Cambridge, 1990.
Granas, A., Dugundji, J., Fixed Point Theory, Springer, Verlag New York, USA, 2003.
Hilfer, R., Applications of Fractional Calculus in Physics, World Scienti c, Singapore, 2000.
Hyers, D.H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27(1941), no. 4, 222-224.
Jackson, F., On q-functions and a certain difference operator, Trans. R. Soc. Edinb., 46(1908), 253-281.
Jackson, F., On q-de nite integrals, Quart. J. Pure Appl. Math., 41(1910), 193-203.
Jung, S.M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, 204, Springer Optim. Appl, Springer, 2011.
Kac, V., Cheung, P., Quantum Calculus, Springer, Verlag New York, USA, 2002.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematical Studies, 204, Elsevier Science, Publishers BV, Amsterdam, 2006.
Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley and Sons, INC., New York, 1993.
Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.
Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S., Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math., 1(2007), 311-323.
Rajkovic, P.M., Marinkovic, S.D, Stankovic, M.S, On q-analogues of Caputo derivative and Mittag-Leffer function, Fract. Calc. Appl. Anal., 10(2007), no. 4, 359-373.
Rassias, Th. M., On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72(1978), no. 2, 297-300.
Rus, I.A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009), 305-320.
Rus, I.A., Ulam stability of ordinary differential equations, Stud. Univ. Babe s-Bolyai Math., 54(2009), no. 4, 125-133.
Samei, M.E., Ranjbar, Gh. Kh., Hedayati, V., Existence of solution for a class of Caputo fractional q-difference inclusion on multifunctios by computational results, Kragujevac J. Math., 45(2021), no. 4, 543-570.
Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.
Taieb, A., Dahmani, Z., Ulam-Hyers-Rassias stability of fractional Lane-Emden equations, ROMAI J., 15(2019), no. 1, 133-153.
Tarasov, V.E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Nonlinear Phys. Sci., Springer Berlin Heidelberg, 2010.
Ulam, S.M., A Collection of Mathematical Problems, Interscience Publishers, Inc., New York, no. 8, 1960.
Ulam, S.M., Problems in Modern Mathematics, Chapter 6, Science Editions, John Wiley and Sons, New York, 1960.
Wang, J., Lv, L., Zhou, Y., Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Di er. Equ., (2011), no. 63, 1-10.
Ye, H., Gao, J., Ding, Y., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328(2007), 1075-1081.
DOI: http://dx.doi.org/10.24193/subbmath.2024.3.02
Refbacks
- There are currently no refbacks.