A new class of Bernstein-type operators obtained by iteration
Abstract
Keywords
Full Text:
PDFReferences
bibitem{CTLX} Chen, X., Tan, J., Liu, Z., Xie J., emph{Approximation of functions by a new family
of generalized Bernstein operators}, J. Math. Anal. Appl., {bf 450}(2017), 244--261.
bibitem{Go07} Gonska, H., emph{On the degree of approximation in Voronovskaja’s theorem}, Stud. Univ. Babec s-Bolyai. Math., {bf 52}(2007), no. 3, 103-115.
bibitem{KP} Knopp, H.P., Pottinger, P., emph{Ein Satz vom Korovkin-Typ f"ur $C^k$-R"aume}, Math. Z., {bf 148}(1976) 23-32.
bibitem{Mo} Mond, B., emph{Note: On the degree of approximation by linear positive operators},
J. Approx. Theory, {bf 18}(1976), 304-306.
bibitem{RP04} Pu altu anea, R., emph{Approximation theory using positive linear operators}, Birkh"auser, Boston, 2004.
bibitem{Po} Popoviciu, T., emph{Les fonctions convexes} (French), Actualit'es Sci. Ind., {bf 992}, Hermann et Cie, Paris, 1944.
bibitem{SM} Smuc, M., emph{On a Chlodovsky variant of $alpha$-Bernstein operator}, Bull. Transilv. Univ. Brac sov Ser. III. Math. Inform. Phys., {bf 10(59)}(2017), no. 1, 165-178.
DOI: http://dx.doi.org/10.24193/subbmath.2023.2.15
Refbacks
- There are currently no refbacks.