A two-steps fixed-point method for the simplicial cone constrained convex quadratic optimization
Abstract
Keywords
Full Text:
PDFReferences
Abdellah, L., Haddou, M., Migot, T., Solving absolute value equations using complemen-
tarity and smoothing functions, J. Comput. Appl. Math., 327(2018),196-207.
Achache, M., On the unique solvability and numerical study of absolute value equations,
J. Numer. Anal. Approx. Theory, 48(2019), no. 2, 112-121.
Achache, M., Anane, N., On the unique solvability and Picard's iterative method for
absolute value equations, Bulletin of Transilvania, Series III: Mathematics and Computer
Sciences, (63)(2021), no. 1, 13-26.
Achache, M., Hazzam, N., Solving absolute value equations via linear complementarity
and interior-point methods, Journal of Nonlinear Functional Analysis, (2018), 1-10.
Barrios, J.G., Ferreira, O.P., N emeth, S.Z., A semi-smooth Newton method for solv-
ing convex quadratic programming problem under simplicial cone constraints, arXiv:
0275 v1 [math. OC] (2015).
Barrios, J.G., Ferreira, O.P., N emeth, S.Z., Projection onto simplicial cones by Picard's
method, Linear Algebra and Its Applications, 480(2015), 27-43.
Corradi, G., A quasi-Newton method for non-smooth equations, Int. J. Comput. Math.,
(5)(2005), 573-581.
Cottle, R.W., Pang, J.S., Stone, R.E., The Linear Complementarity Problem, Academic
Press, New-York, 1992.
Ferreira, O.P., N emeth, S.Z., Projection onto simplicial cones by a semi-smooth Newton
method, Optimization Letters, 9(4)(2015), 731-741.
Hu, S.L., Huang, Z.H., Zhang, Q., A generalized Newton method for absolute value
equations associated with second order cones, J. Comput. Appl. Math., 235(2011), 1490-
Ke, Y., The new iteration algorithm for absolute value equation, Applied Mathematics
Letters, 99(2020).
Ketabchi, S., Moosaei, H., An e cient method for optimal correcting of absolute value
equations by minimal changes in the right hand side, Comput. Math. Appl., 64(2012),
-1885.
Li, C.X., A Modi ed generalized Newton method for absolute value equations, J. Optim.
Theory Appl., (2016), 1055-1059.
Mangasarian, O.L., A generalized Newton method for absolute value equations, Opti-
mization Letters, 3(2009), 101-108.
Mangasarian, O.L., Linear complementarity as absolute value equation solution, Opti-
mization Letters, 8(2014), 1529-1534.
Mangasarian, O.L., Meyer, R.R., Absolute value equations, Linear Algebra and Its Ap-
plications, 419(2006), 359-367.
Noor, M.A., Iqbal, J., Khattri, S., Al-Said, E., On a iterative method for solving absolute
value equation, Optimization Letters, 6(2012), 1027-1033.
Rhon, J., A theorem of the alternatives for the equation Ax+B jxj = b, Linear Multilinear
A, 52(2004), 421-426.
Ujv ari, M., On the projection onto a nitely generated cone, Preprint WP 2007-5,
MTASZTAKI, Laboratory of Operations Research and Decision Systems, Budapest,
DOI: http://dx.doi.org/10.24193/subbmath.2024.2.13
Refbacks
- There are currently no refbacks.