Complex Operators Generated by q-Bernstein Polynomials, q≥1
Abstract
Keywords
Full Text:
PDFReferences
Cárdenas-Morales, D., Garrancho, P., Ra¸sa I., Bernstein-type operators which preserve polynomials. Comput. Math. Appl., 62(2011), no. 1, 158163.
Gal, S.G., Approximation by Complex Bernstein and Convolution Type Operators, Series on Concrete and Applicable Mathematics, vol. 8, World Scienti c Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
Goodman, A.W., An invitation to the study of univalent and multivalent functions, Internat. J. Math. Math. Sci., 2(1979), no. 2, 163186.
Mahmudov, N., Kara, M., Approximation theorems for generalized complex Kantorovich-type operators, J. Appl. Math. (2012), Article Number : 454579.
Mahmudov, N. , Approximation by q-Durrmeyer type polynomials in compact disksin the case q > 1, Appl. Math. Comp., 237(2014), 293303.
Ostrovskii, I., Ostrovska, S., On the analyticity of functions approximated by their q-Bernstein polynomials when q > 1, Appl. Math. Comp. 217(2010), no. 1, 6572.
Ostrovska, S., q-Bernstein polynomials and their iterates, J. Approx. Theory, 123 (2003), 232-255.
Sveshnikov, A.G., Tikhonov, A.N., The Theory of Functions of a Complex Variable, Mir Publishers, Moscow, 1971.
Silverman, H., Complex Variables, Houghton Mi in Co., Boston, 1975.
Wang, H., Wu, X.Z., Saturation of convergence for q-Bernstein polynomials in the case q≥1, J. Math. Anal. Appl., 337(2008), 744750.
Refbacks
- There are currently no refbacks.