Microscopic behavior of the solutions of a transmission problem for the Helmholtz equation. A functional analytic approach
Abstract
${\mathbb{R}}^{n}$ that contain the origin. Let
$\Omega(\epsilon)\equiv
\Omega^{o}\setminus\epsilon\overline{\Omega^i}$ for small
$\epsilon>0$. Then we consider
a linear transmission problem
for the Helmholtz equation in the pair of domains $\epsilon \Omega^i$
and $\Omega(\epsilon)$ with Neumann boundary conditions on
$\partial\Omega^o$. Under appropriate conditions on the wave numbers
in $\epsilon \Omega^i$ and $\Omega(\epsilon)$ and on the
parameters involved in the transmission conditions on $\epsilon
\partial\Omega^i$, the transmission problem has a unique solution
$(u^i(\epsilon,\cdot), u^o(\epsilon,\cdot))$ for small values of
$\epsilon>0$.
Here $u^i(\epsilon,\cdot) $ and $u^o(\epsilon,\cdot) $ solve the
Helmholtz equation in $\epsilon \Omega^i$ and $\Omega(\epsilon)$,
respectively. Then we prove that if $\xi\in\overline{\Omega^i}$ and $\xi\in \mathbb{R}^n\setminus \Omega^i $
then the rescaled solutions $u^i(\epsilon,\epsilon\xi) $ and $u^o(\epsilon,\epsilon\xi)$ can be expanded into a convergent power expansion of $\epsilon$,
$\kappa_n\epsilon\log\epsilon$, $\delta_{2,n}\log^{-1}\epsilon$, $ \kappa_n\epsilon\log^2\epsilon $
for $\epsilon$ small enough. Here $\kappa_{n}=1$ if $n$ is even
and $\kappa_{n}=0$ if $n$ is odd and $\delta_{2,2}\equiv 1$ and
$\delta_{2,n}\equiv 0$ if $n\geq 3$.
Keywords
Full Text:
PDFReferences
Ammari, H., Iakovleva, E., Moskow, S., {em Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency,} SIAM J. Math. Anal., {bf 34}(2003), 882–900.
Ammari, H., Vogelius, M.S., Volkov, D., {em Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of imperfections of small diameter II. The full Maxwell equations,} J. Math. Pures Appl., {bf 80}(2001), 769–814.
Ammari, M.S., Volkov, D., {em Correction of order three for the expansion of two dimensional electromagnetic fields perturbed by the presence of inhomogeneities of small diameter,} Journal of Computational Physics, {bf 189}(2003), 371-389.
Akyel, T., Lanza de Cristoforis, M.,
{em Asymptotic behaviour of the solutions
of a transmission problem
for the Helmholtz
equation: A functional
analytic approach}, to appear in Mathematical Methods in the Applied Sciences, 2022.
Cartan, H., {em Cours de calcul diff'{e}rentiel}, Hermann Paris, 1967.
Cherepanov, G.P., {em Mechanics of large destructions}. Nauka, Moscow 1974.
Cherepanov, G.P., {em Mechanics of destruction of composite
materials}. Nauka, Moscow 1983.
Cole, J.D., {em Perturbation methods in applied mathematics}.
Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto,
Ont.-London, 1968.
Colton, D.L., Kress, R.,
{em Integral equation methods in scattering theory}, Society for Industrial and Applied Mathematics, 2013.
Dalla Riva, M., Lanza de Cristoforis, M., {em A perturbation result for the layer potentials of general second order differential operators with constant coefficients},
Journal of Applied Functional Analysis, {bf 5}(2010), 10--30.
Dalla Riva, M., Lanza de Cristoforis, M., Musolino, P., {em Singularly Perturbed Boundary Value Problems. A Functional Analytic Approach}. Springer, Cham, 2021.
Hansen, D.J., Poignard, C., Vogelius, M.S., {em Asymptotically precise norm estimates of
scattering from a small circular inhomogeneity,} Applicable Analysis, {bf 86}(2007), 433--458.
Il'in, A.M., {em Matching of asymptotic expansions of solutions of
boundary value problems}. Translated from the Russian by V. Minachin
[V. V. Minakhin]. Translations of Mathematical Monographs, 102.
American Mathematical Society, Providence, RI, 1992.
Lanza de Cristoforis, M., {em Properties and Pathologies
of the composition and inversion operators in Schauder spaces}, Rend.
Accad. Naz. Sci. XL, {bf 15}(1991), 93--109.
Lanza~de Cristoforis, M., {em Asymptotic behaviour of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: A functional analytic approach}, Complex Var. Elliptic Equ. {bf 52}(2007) 945--977.
Lanza~de Cristoforis, M., {em Simple Neumann eigenvalues for the
Laplace operator in a domain with a small hole. A functional analytic
approach}.
Revista Matematica Complutense, {bf 25}(2012), 369-412.
Lanza de Cristoforis, M., Musolino, P., {em A real analyticity result for a nonlinear integral operator}. J. Integral Equations Appl. {bf 25}(2013) 21--46.
Lanza~de~Cristoforis, M., Rossi, L., {em
Real analytic dependence of simple and double
layer potentials upon perturbation
of the support and of the density}, J. Integral Equations
Appl., {bf 16}(2004), 137--174.
Lanza~de~Cristoforis, M., Rossi, L., {em Real analytic dependence of simple and double layer potentials for the Helmholtz equation upon perturbation of the support and of the density}. Analytic Methods of Analysis and Differential Equations, AMADE 2006, Eds. A.A. Kilbas and S.V. Rogosin, Cambridge Scientific Publishers, Cambridge (UK) (2008), 193--220.
Lebedev, N. N., {em Special functions and their applications}. Revised edition, translated from the Russian and edited by Richard A. Silverman. Unabridged and corrected republication. Dover Publications, Inc., New York, 1972.
Mazya, V.G., Nazarov, S.A., Plamenewskii, B.A., {em Asymptotic theory of
elliptic boundary value problems in singularly perturbed domains},
{bf I, II},
(translation of the original in German published by Akademie Verlag 1991),
Oper. Theory Adv. Appl., {bf 111}, {bf 112}, Birkh"{a}user Verlag,
Basel, 2000.
Nayfeh, A.H., {em Perturbation methods}. Wiley-Interscience. New York, 1973.
Prodi, G., Ambrosetti, A., {em Analisi non lineare}, Editrice
Tecnico Scientifica, Pisa, 1973.
Van Dyke, M.D., {em Perturbation methods in fluid mechanics}. Academic
Press, New York 1964.
Vogelius, M.S., Volkov, D., {em Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter}, Mathematical Modelling and Numerical Analysis, {bf 34}(2000), 723--748.
DOI: http://dx.doi.org/10.24193/subbmath.2022.2.14
Refbacks
- There are currently no refbacks.