Global existence and uniqueness for viscoelastic equations with nonstandard growth conditions
Abstract
This paper is devoted to the study of generalized viscoelastic nonlinear equations with Dirichlet-Neumann boundary conditions. We establish the local and uniqueness of weak solutions results in Sobolev spaces with variable exponents. Solutions are constructed as a limit of approximate solutions by a method independent of a compactness argument. We also discuss the global existence of solutions in the energy space.
Keywords
Full Text:
PDFReferences
Abita, R.,
Semilinear hyperbolic boundary value
problem associated to the nonlinear generalized viscoelastic equations,
Acta Mathematica Vietnamica, {bf 43}(2018), 219-238.
Abita, R.,
Existence and asymptotic stability for the
semilinear wave equation with variable-exponent nonlinearities,
J. Math. Phys., {bf 60}(2019), 122701.
Abita, R.,
Bounds for below-up time in a nonlinear
generalized heat equation,
Appl Anal., (2020), 1871-1879.
Abita, R.,
Lower and upper bounds for the blow-up time
to a viscoelastic Petrovsky wave equation with variable sources and memory
term, Appl Anal., (2022), 1-29.
Andradea, D., Jorge Silvab, M.A., Mac, T.F.,
Exponential stability for a plate equation with $p$-laplacian and
memory terms,
Math. Methods Appl. Sci., {bf 35}(2012), 417-426.
Ayang, Z.,
Global existence, asymptotic behavior and
blow-up of solutions for a class of nonlinear wave equations with
dissipative term, J. Differential Equations, {bf 187}(2003), 520-540.
Ayang, Z., Baoxia, J.,
Global attractor for a class of Kirchhoff models,
J. Math. Phys., {bf 50}(2010), 29pp.
Cavalcanti, M.M., Oquendo, H.P.,
Frictional versus viscoelastic damping in a semilinear wave equation,
SIAM J. Control Optim., {bf 42}(2003), 1310-1324.
Dafermos, C.M.,
Asymptotic stability in viscoelasticity,
Arch. Rational Mech. Anal., {bf 37}(1970), 297-208.
Dafermos, C.M., Nohel, J.A.,
Energy methods for
nonlinear hyperbolic volterra integro-differential equations,
Comm. Partial Differential Equations, {bf 4}(1979), 219-278.
Diening, L., Histo, P., Harjulehto, P., Ru{u}zicka, M.,
Lebesgue and Sobolev Spaces with Variable Exponents,
vol. 2017, in: Springer Lecture Notes, Springer-Verlag, Berlin, 2011.
Diening, L., Ru{u}zicka, M.,
Calderon Zygmund operators on generalized Lebesgue spaces $L^{p(x)}(Omega )$ and
problems related to fluid dynamics,
Preprint Mathematische Fakult"{a}t,
Albert-Ludwigs-Universit"{a}t Freiburg, {bf 120}(2002), 197-220.
Fan, X., Shen, J., Zhao, D.,
Sobolev embedding theorems for spaces $W^{k,p(x)}(Omega )$,
J. Math. Anal. Appl., {bf 262}(2001), 749-760.
Fu, Y.,
The existence of solutions for elliptic systems
with nonuniform growth, Studia Math., {bf 151}(2002), 227-246.
Kov'{r}cik, O., R'{a}kosnik, J.,
On spaces $L^{p(x)}(Omega )$ and $W^{1,p(x)}(Omega )$,
Czechoslovak Math. J.,
{bf 41}(1991), 592-618.
Lions, J.L.,
Quelques M'{e}thodes de R'{e}solution des Drobl`{e}mes aux Limites Non Lin'{e}aires,
Dunod, Paris, 1966.
Ma, T.F., Soriano, J.A.,
On weak solutions for an evolution equation with exponential nonlinearities,
Nonlinear Anal., {bf 37}(1999), 1029-1038.
Rivera JE, M.,
Asymptotic behaviour in linear viscoelasticity,
Quart. Appl. Math., {bf 52}(1994), 628-648.
Rivera JE, M., Andrade, D.,
Exponential decay of non-linear wave equation with a viscoelastic boundary condition,
Math. Methods Appl. Sci., {bf 23}(2000), 41-61.
DOI: http://dx.doi.org/10.24193/subbmath.2024.2.12
Refbacks
- There are currently no refbacks.