Global existence and uniqueness for viscoelastic equations with nonstandard growth conditions
DOI:
https://doi.org/10.24193/subbmath.2024.2.12Keywords:
Viscoelastic equation, Global Existence, Nonlinear Dissipation, Energy estimates.Abstract
This paper is devoted to the study of generalized viscoelastic nonlinear equations with Dirichlet-Neumann boundary conditions. We establish the local and uniqueness of weak solutions results in Sobolev spaces with variable exponents. Solutions are constructed as a limit of approximate solutions by a method independent of a compactness argument. We also discuss the global existence of solutions in the energy space.
References
Abita, R.,
Semilinear hyperbolic boundary value
problem associated to the nonlinear generalized viscoelastic equations,
Acta Mathematica Vietnamica, {bf 43}(2018), 219-238.
Abita, R.,
Existence and asymptotic stability for the
semilinear wave equation with variable-exponent nonlinearities,
J. Math. Phys., {bf 60}(2019), 122701.
Abita, R.,
Bounds for below-up time in a nonlinear
generalized heat equation,
Appl Anal., (2020), 1871-1879.
Abita, R.,
Lower and upper bounds for the blow-up time
to a viscoelastic Petrovsky wave equation with variable sources and memory
term, Appl Anal., (2022), 1-29.
Andradea, D., Jorge Silvab, M.A., Mac, T.F.,
Exponential stability for a plate equation with $p$-laplacian and
memory terms,
Math. Methods Appl. Sci., {bf 35}(2012), 417-426.
Ayang, Z.,
Global existence, asymptotic behavior and
blow-up of solutions for a class of nonlinear wave equations with
dissipative term, J. Differential Equations, {bf 187}(2003), 520-540.
Ayang, Z., Baoxia, J.,
Global attractor for a class of Kirchhoff models,
J. Math. Phys., {bf 50}(2010), 29pp.
Cavalcanti, M.M., Oquendo, H.P.,
Frictional versus viscoelastic damping in a semilinear wave equation,
SIAM J. Control Optim., {bf 42}(2003), 1310-1324.
Dafermos, C.M.,
Asymptotic stability in viscoelasticity,
Arch. Rational Mech. Anal., {bf 37}(1970), 297-208.
Dafermos, C.M., Nohel, J.A.,
Energy methods for
nonlinear hyperbolic volterra integro-differential equations,
Comm. Partial Differential Equations, {bf 4}(1979), 219-278.
Diening, L., Histo, P., Harjulehto, P., Ru{u}zicka, M.,
Lebesgue and Sobolev Spaces with Variable Exponents,
vol. 2017, in: Springer Lecture Notes, Springer-Verlag, Berlin, 2011.
Diening, L., Ru{u}zicka, M.,
Calderon Zygmund operators on generalized Lebesgue spaces $L^{p(x)}(Omega )$ and
problems related to fluid dynamics,
Preprint Mathematische Fakult"{a}t,
Albert-Ludwigs-Universit"{a}t Freiburg, {bf 120}(2002), 197-220.
Fan, X., Shen, J., Zhao, D.,
Sobolev embedding theorems for spaces $W^{k,p(x)}(Omega )$,
J. Math. Anal. Appl., {bf 262}(2001), 749-760.
Fu, Y.,
The existence of solutions for elliptic systems
with nonuniform growth, Studia Math., {bf 151}(2002), 227-246.
Kov'{r}cik, O., R'{a}kosnik, J.,
On spaces $L^{p(x)}(Omega )$ and $W^{1,p(x)}(Omega )$,
Czechoslovak Math. J.,
{bf 41}(1991), 592-618.
Lions, J.L.,
Quelques M'{e}thodes de R'{e}solution des Drobl`{e}mes aux Limites Non Lin'{e}aires,
Dunod, Paris, 1966.
Ma, T.F., Soriano, J.A.,
On weak solutions for an evolution equation with exponential nonlinearities,
Nonlinear Anal., {bf 37}(1999), 1029-1038.
Rivera JE, M.,
Asymptotic behaviour in linear viscoelasticity,
Quart. Appl. Math., {bf 52}(1994), 628-648.
Rivera JE, M., Andrade, D.,
Exponential decay of non-linear wave equation with a viscoelastic boundary condition,
Math. Methods Appl. Sci., {bf 23}(2000), 41-61.