Continuity and maximal quasimonotonicity of normal cone operators

Monica Bianchi, Nicolas Hadjisavvas, Rita Pini

Abstract


In this paper we study some properties of the adjusted normal cone operator of quasiconvex functions. In particular,  we introduce a new notion of maximal quasimotonicity for set-valued maps different from similar ones recently appeared in the literature, and we show that it is enjoyed by this operator. Moreover, we prove the $s\times w^*$ cone upper semicontinuity of the normal cone operator in the domain of $f$ in case the set of global minima has non empty interior.


Keywords


quasimonotone operator; maximal quasimonotone operator; cone upper semicontinuity; upper sign continuity; quasiconvex function

Full Text:

PDF

References


begin{thebibliography}{9}

bibitem{AlHadSha2018}

Al-Homidan, S., Hadjisavvas, N., Shaalan, L., emph{Tranformation of quasiconvex functions to eliminate local minima}, J. Optim. Theory Appl. textbf{177}, 93-105 (2018) %

bibitem {AlipBorder2006}Aliprantis, C.D., Border, K., emph{Infinite

Dimensional Analysis}, Springer-Verlag Berlin Heidelberg (2006).

bibitem {AubFr-90}Aubin, J.P., Frankowska, H., emph{Set-Valued Analysis},

Birkh"{a}user (1990).

bibitem {Aussel98}Aussel, D., emph{Subdifferential Properties of Quasiconvex and

Pseudoconvex Functions: Unified Approach}, J. Optim. Theory Appl. textbf{97}, (1998)

-45.

bibitem {AusEbe2013}Aussel, D., Eberhard, A., emph{Maximal quasimonotonicity

and dense single-directional properties of quasimonotone operators}, Math.

Program. Ser. B textbf{139} (2013), 27-54.

bibitem {AusCorLass1994}Aussel, D., Corvellec, J.-N., Lassonde, M.,

emph{Subdifferential characterization of quasiconvexity and convexity}, J. Convex

Anal. textbf{1} (1994), 195-201.

bibitem {AusHad2005}Aussel, D., Hadjisavvas, N., emph{Adjusted sublevel sets,

normal operator, and quasiconvex programming}, SIAM J. Optim. textbf{16} (2005),

-367.

bibitem{BorCrou1990}

Borde, J., Crouzeix, J.-P., emph{Continuity properties of the normal cone to the level sets of a quasiconvex function},

J. Optim. Theory Appl. textbf{66} (1990), 415-429.

bibitem{Bor2010} Borwein, J.M, emph{Fifty years of maximal monotonicity}, Optim. Lett. textbf{4} (2010), 473-490.

bibitem{BorLew1992} Borwein, J.M, Lewis, A.S., emph{Partially finite convex programming, Part I: Quasi relative interiors and duality theory}, Math. Program. textbf{57} (1992), 15-48.

bibitem {BueCotri2019}Bueno, O., Cotrina, J., emph{On maximality of

quasimonotone operators}, Set-Valued Var. Anal. textbf{27} (2019), 87-101.

bibitem {Clar83}Clarke, F.H., emph{Optimization and Nonsmooth Analysis}, Wiley

Interscience, New York (1983).

bibitem{Csetnek2010}Csetnek, E.R., emph{Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators}, PhD Thesis, Logos Verlag, Berlin (2010).

bibitem {Had2003}Hadjisavvas, N., emph{Continuity and maximality properties of

pseudo-monotone operators}, J. Convex Anal. textbf{178} (2003), 459-469.

bibitem {HuPap1997}Hu, S., Papageorgiou, S., emph{Handbook of Multivalued

Analysis, Vol. I: Theory}, Kluwer Academic Publisher, Norwell, MA (1997).

bibitem {KarScha1990}

Karamardian, S., Schaible, S., emph{Seven kinds of monotone maps}, J. Optim. Theory Appl. textbf{66} (1990), 37–46.

bibitem {MLSvai05} Mart'{i}nez-Legaz, J.-E., Svaiter, B. F., emph{Monotone operators representable by l.s.c. convex functions}, Set-Valued Anal. textbf{13} (2005), 21–46.

bibitem {Shir-07}Schirotzek, W., emph{Nonsmooth Analysis}, Springer-Verlag Berlin

Heidelberg (2007).

end{thebibliography}




DOI: http://dx.doi.org/10.24193/subbmath.2022.1.03

Refbacks

  • There are currently no refbacks.