Continuity and maximal quasimonotonicity of normal cone operators
Abstract
In this paper we study some properties of the adjusted normal cone operator of quasiconvex functions. In particular, we introduce a new notion of maximal quasimotonicity for set-valued maps different from similar ones recently appeared in the literature, and we show that it is enjoyed by this operator. Moreover, we prove the $s\times w^*$ cone upper semicontinuity of the normal cone operator in the domain of $f$ in case the set of global minima has non empty interior.
Keywords
Full Text:
PDFReferences
begin{thebibliography}{9}
bibitem{AlHadSha2018}
Al-Homidan, S., Hadjisavvas, N., Shaalan, L., emph{Tranformation of quasiconvex functions to eliminate local minima}, J. Optim. Theory Appl. textbf{177}, 93-105 (2018) %
bibitem {AlipBorder2006}Aliprantis, C.D., Border, K., emph{Infinite
Dimensional Analysis}, Springer-Verlag Berlin Heidelberg (2006).
bibitem {AubFr-90}Aubin, J.P., Frankowska, H., emph{Set-Valued Analysis},
Birkh"{a}user (1990).
bibitem {Aussel98}Aussel, D., emph{Subdifferential Properties of Quasiconvex and
Pseudoconvex Functions: Unified Approach}, J. Optim. Theory Appl. textbf{97}, (1998)
-45.
bibitem {AusEbe2013}Aussel, D., Eberhard, A., emph{Maximal quasimonotonicity
and dense single-directional properties of quasimonotone operators}, Math.
Program. Ser. B textbf{139} (2013), 27-54.
bibitem {AusCorLass1994}Aussel, D., Corvellec, J.-N., Lassonde, M.,
emph{Subdifferential characterization of quasiconvexity and convexity}, J. Convex
Anal. textbf{1} (1994), 195-201.
bibitem {AusHad2005}Aussel, D., Hadjisavvas, N., emph{Adjusted sublevel sets,
normal operator, and quasiconvex programming}, SIAM J. Optim. textbf{16} (2005),
-367.
bibitem{BorCrou1990}
Borde, J., Crouzeix, J.-P., emph{Continuity properties of the normal cone to the level sets of a quasiconvex function},
J. Optim. Theory Appl. textbf{66} (1990), 415-429.
bibitem{Bor2010} Borwein, J.M, emph{Fifty years of maximal monotonicity}, Optim. Lett. textbf{4} (2010), 473-490.
bibitem{BorLew1992} Borwein, J.M, Lewis, A.S., emph{Partially finite convex programming, Part I: Quasi relative interiors and duality theory}, Math. Program. textbf{57} (1992), 15-48.
bibitem {BueCotri2019}Bueno, O., Cotrina, J., emph{On maximality of
quasimonotone operators}, Set-Valued Var. Anal. textbf{27} (2019), 87-101.
bibitem {Clar83}Clarke, F.H., emph{Optimization and Nonsmooth Analysis}, Wiley
Interscience, New York (1983).
bibitem{Csetnek2010}Csetnek, E.R., emph{Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators}, PhD Thesis, Logos Verlag, Berlin (2010).
bibitem {Had2003}Hadjisavvas, N., emph{Continuity and maximality properties of
pseudo-monotone operators}, J. Convex Anal. textbf{178} (2003), 459-469.
bibitem {HuPap1997}Hu, S., Papageorgiou, S., emph{Handbook of Multivalued
Analysis, Vol. I: Theory}, Kluwer Academic Publisher, Norwell, MA (1997).
bibitem {KarScha1990}
Karamardian, S., Schaible, S., emph{Seven kinds of monotone maps}, J. Optim. Theory Appl. textbf{66} (1990), 37–46.
bibitem {MLSvai05} Mart'{i}nez-Legaz, J.-E., Svaiter, B. F., emph{Monotone operators representable by l.s.c. convex functions}, Set-Valued Anal. textbf{13} (2005), 21–46.
bibitem {Shir-07}Schirotzek, W., emph{Nonsmooth Analysis}, Springer-Verlag Berlin
Heidelberg (2007).
end{thebibliography}
DOI: http://dx.doi.org/10.24193/subbmath.2022.1.03
Refbacks
- There are currently no refbacks.