Asymptotic behavior of generalized CR-iteration algorithm and application to common zeros of accretive operators

Aadil Mushtaq, Khaja Moinuddin, Nisha Sharma, Anita Tomar

Abstract


The purpose of this study is to provide a generalized CR-iteration algorithm for finding common fixed points (CFPs) for nonself quasi-nonexpansive mappings (QNEMs) in a uniformly convex Banach space. The suggested algorithm’s convergence analysis is analyzed in uniformly convex Banach spaces.


Keywords


Fixed point; CR− iterative algorithm; nonself QNEMs

Full Text:

PDF

References


Agarwal, R.P., O'Regan, D., Sahu, D.R.,

Fixed Point Theory for Lipschitzian-Type Mappings With Applications,

Springer, New York, 2009.

Babu, G.V.R., Satyanarayana, G.,

Convergence of $CR-$iteration procedure for a nonlinear quasi contractive

map in convex metric spaces,

Commun. Nonlinear Anal., textbf{7}(2019), 82-88.

Bauschke, H.H., Combettes, P.L.,

Convex Analysis and Monotone Operator Theory in Hilbert Spaces,

Springer, Berlin, 2011.

Browder, F.E.,

Semicontractive and semiaccretive nonlinear mappings in Banach spaces,

Bull. Amer. Math. Soc. (N.S), text{74}(1968), 660-665.

Chang, R., Kumar, V., Kumar, S., Chan, C.K.,

Strong convergence of a new three step iterative scheme in Banach spaces,

Am. J. Comput. Math., text{2}(2012), 345-357.

Chang, S.S., Wang, L., Joseph Lee, H.W., Chan, C.K.,

Strong and convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces,

Fixed Point Theory Appl., {bf 122}(2013), 1-16.

Cioranescu, I.,

Geometry of Banach Spaces, Duality Mapping and Nonlinear Problems,

Kluwer, Amsterdam, 1990.

Ishikawa, S.,

Fixed points by a new iteration method,

Proc. Amer. Math. Soc., text{44}(1974), 147-150.

Karakaya, V., G"ursoy, F., Dogan, K., Ert"urk, M.,

Data dependence results for multistep and $CR-$iterative schemes in the class of contractive-like operators,

Abstr. Appl. Anal., text{2013}(2013), 1-7.

Kim, J.K., Tuyen, T.M.,

Approximation common zero of two accretive operators in Banach spaces,

Appl. Math. Comput., text{283}(2016), 265-281.

Kwan, Y.C., Shahid, A.A., Nazeer, W., Abbas, M., Kang, S.M.,

Fractal generation via $CR-$iteration scheme with s-convexity,

IEEE Access., text{7}(2019), 69986-69997.

Li, D., Shahid, A.A., Tassaddiq, A., Khan, A., Guo, X., Ahmad, M.,

CR-Iteration in generation of antifractals with s-convexity,

IEEE Access., text{8}(2020), 61621-61630.

Mann, W.R.,

Mean value methods in iteration,

Proc. Amer. Math. Soc., text{6}(1953), 506-510.

Martinet, B.,

Regularisation d'in'equations variationelles par approximations successives,

Rev. Fr. Inform. Rech. Oper., {bf 4}(1970), 154-158.

Martinet, B.,

Determination approch'ee d'un point fixe d'une

application pseudo-contractante,

C.R. Math. Acad. Sci. Paris., text{274}(1972), 163-165.

Picard, E.,

M'emoire sur la th'eorie des 'equations aux deriv'es partielles et la method des approximations successive,

J. Math. Pures et Appl., text{6}(1890), 145-210.

Rockafellar, R.T.,

Monotone operators and the proximal point algorithm,

SIAM J. Control Optim., text{14}(1976), 877-898.

Rockafellar, R.T.,

Augmented Lagrangians and applications of the proximal point algorithm in convex

programming,

Math. Oper. Res., text{1}(1976), 97-116.

Sahu, D.R.,

Applications of the S-iterative algorithm to constrained minimization problems and split

feasibility problems,

Fixed Point Theory, text{12}(2011), no. 1, 187-204.

Sahu, D.R., Ansari, Q.H., Yao, J.C.,

The prox-Tikhonov-like forward-backward method and applications,

Taiwanese J. Math., text{19}(2015), 481-503.

Xu, H.K.,

Inequalities in Banach spaces with applications,

Nonlinear Anal., text{16}(1991), 1127-1138.

Xu, H.K.,

Iterative algorithms for nonlinear operators,

J. Lond. Math. Soc., text{66}(2002), no. 2, 240-256.

Xu, H.K.,

Strong convergence of an iterative method for nonexpansive and accretive operators,

J. Math. Anal. Appl., text{314}(2006), 631-643.

Zegeye, H., Shahzad, N.,

Strong convergence theorems for a common zero of a finite family of maccretive

mappings, Nonlinear Anal., text{66}(2007), 1161-1169.

Zhang, Q.N., Song, Y.S.,

Halpern type proximal point algorithm of accretive operators,

Nonlinear Anal., text{75}(2012), 1859-1868.




DOI: http://dx.doi.org/10.24193/subbmath.2024.2.10

Refbacks

  • There are currently no refbacks.