Asymptotic behavior of generalized CR-iteration algorithm and application to common zeros of accretive operators
Abstract
The purpose of this study is to provide a generalized CR-iteration algorithm for finding common fixed points (CFPs) for nonself quasi-nonexpansive mappings (QNEMs) in a uniformly convex Banach space. The suggested algorithm’s convergence analysis is analyzed in uniformly convex Banach spaces.
Keywords
Full Text:
PDFReferences
Agarwal, R.P., O'Regan, D., Sahu, D.R.,
Fixed Point Theory for Lipschitzian-Type Mappings With Applications,
Springer, New York, 2009.
Babu, G.V.R., Satyanarayana, G.,
Convergence of $CR-$iteration procedure for a nonlinear quasi contractive
map in convex metric spaces,
Commun. Nonlinear Anal., textbf{7}(2019), 82-88.
Bauschke, H.H., Combettes, P.L.,
Convex Analysis and Monotone Operator Theory in Hilbert Spaces,
Springer, Berlin, 2011.
Browder, F.E.,
Semicontractive and semiaccretive nonlinear mappings in Banach spaces,
Bull. Amer. Math. Soc. (N.S), text{74}(1968), 660-665.
Chang, R., Kumar, V., Kumar, S., Chan, C.K.,
Strong convergence of a new three step iterative scheme in Banach spaces,
Am. J. Comput. Math., text{2}(2012), 345-357.
Chang, S.S., Wang, L., Joseph Lee, H.W., Chan, C.K.,
Strong and convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces,
Fixed Point Theory Appl., {bf 122}(2013), 1-16.
Cioranescu, I.,
Geometry of Banach Spaces, Duality Mapping and Nonlinear Problems,
Kluwer, Amsterdam, 1990.
Ishikawa, S.,
Fixed points by a new iteration method,
Proc. Amer. Math. Soc., text{44}(1974), 147-150.
Karakaya, V., G"ursoy, F., Dogan, K., Ert"urk, M.,
Data dependence results for multistep and $CR-$iterative schemes in the class of contractive-like operators,
Abstr. Appl. Anal., text{2013}(2013), 1-7.
Kim, J.K., Tuyen, T.M.,
Approximation common zero of two accretive operators in Banach spaces,
Appl. Math. Comput., text{283}(2016), 265-281.
Kwan, Y.C., Shahid, A.A., Nazeer, W., Abbas, M., Kang, S.M.,
Fractal generation via $CR-$iteration scheme with s-convexity,
IEEE Access., text{7}(2019), 69986-69997.
Li, D., Shahid, A.A., Tassaddiq, A., Khan, A., Guo, X., Ahmad, M.,
CR-Iteration in generation of antifractals with s-convexity,
IEEE Access., text{8}(2020), 61621-61630.
Mann, W.R.,
Mean value methods in iteration,
Proc. Amer. Math. Soc., text{6}(1953), 506-510.
Martinet, B.,
Regularisation d'in'equations variationelles par approximations successives,
Rev. Fr. Inform. Rech. Oper., {bf 4}(1970), 154-158.
Martinet, B.,
Determination approch'ee d'un point fixe d'une
application pseudo-contractante,
C.R. Math. Acad. Sci. Paris., text{274}(1972), 163-165.
Picard, E.,
M'emoire sur la th'eorie des 'equations aux deriv'es partielles et la method des approximations successive,
J. Math. Pures et Appl., text{6}(1890), 145-210.
Rockafellar, R.T.,
Monotone operators and the proximal point algorithm,
SIAM J. Control Optim., text{14}(1976), 877-898.
Rockafellar, R.T.,
Augmented Lagrangians and applications of the proximal point algorithm in convex
programming,
Math. Oper. Res., text{1}(1976), 97-116.
Sahu, D.R.,
Applications of the S-iterative algorithm to constrained minimization problems and split
feasibility problems,
Fixed Point Theory, text{12}(2011), no. 1, 187-204.
Sahu, D.R., Ansari, Q.H., Yao, J.C.,
The prox-Tikhonov-like forward-backward method and applications,
Taiwanese J. Math., text{19}(2015), 481-503.
Xu, H.K.,
Inequalities in Banach spaces with applications,
Nonlinear Anal., text{16}(1991), 1127-1138.
Xu, H.K.,
Iterative algorithms for nonlinear operators,
J. Lond. Math. Soc., text{66}(2002), no. 2, 240-256.
Xu, H.K.,
Strong convergence of an iterative method for nonexpansive and accretive operators,
J. Math. Anal. Appl., text{314}(2006), 631-643.
Zegeye, H., Shahzad, N.,
Strong convergence theorems for a common zero of a finite family of maccretive
mappings, Nonlinear Anal., text{66}(2007), 1161-1169.
Zhang, Q.N., Song, Y.S.,
Halpern type proximal point algorithm of accretive operators,
Nonlinear Anal., text{75}(2012), 1859-1868.
DOI: http://dx.doi.org/10.24193/subbmath.2024.2.10
Refbacks
- There are currently no refbacks.