New hybrid conjugate gradient method as a convex combination of PRP and RMIL+ methods
Abstract
The Conjugate Gradient (CG) method is a powerful iterative approach for solving large-scale minimization problems, characterized by its simplicity, low computation cost and good convergence. In this paper, a new hybrid conjugate gradient HLB method (HLB: Hadji-Laskri-Bechouat) is proposed and analysed for unconstrained optimization. We compute the parameter \(\beta_{k}^{HLB}\) as a convex combination of the Polak-Ribi\`{e}re-Polyak \(\left(
\beta _{k}^{PRP}\right) \left[ 1\right] \) and the Mohd Rivaie-Mustafa Mamat
and Abdelrhaman Abashar \(\left( \beta _{k}^{RMIL+}\right) \) i.e \(\beta
_{k}^{HLB}=\left( 1-\theta _{k}\right) \beta _{k}^{PRP}+\theta _{k}\beta
_{k}^{RMIL+}\). \ By comparing numerically CGHLB with PRP and RMIL+ and by using the Dolan and More CPU performance, we deduce that CGHLB is more efficient.
Full Text:
PDFReferences
Al-Baali, M., Descent property and global convergence of Fletcher-Reeves method with
inexact line search, IMA J. Numer. Anal., 5(1985), no. 1, 121-124.
Al-Bayati, A.Y., Al-Assady, N.H., Conjugate Gradient Method, Technical Research re-
port, Technical Research, School of Computer Studies, Leeds University, 1986.
Andrei, N., An unconstrained optimization test functions collection, Adv. Model. Optim.,
(2008), no. 1, 147-161.
Andrei, N., Another hybrid conjugate gradient algorithm for unconstrained optimization,
Numer. Algorithms, 47(2008), no. 2, 143-156.
Andrei, N., Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization, J.
Optim. Theory Appl., 141(2009), no. 2, 249-264.
Andrei, N., Nonlinear Conjugate Gradient Methods for Unconstrained Optimization,
Springer International Publishing, 2020.
Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, P.L., CUTE: Constrained and uncon-
strained testing environments, ACM Trans. Math. Softw., 21(1995), no. 1, 123-160.
Dai, Y.H., Yuan, Y., A nonlinear conjugate gradient method with a strong global con-
vergence property, SIAM J. Optim., 10(1999), no. 1, 177-182.
Dai, Y.H., Yuan, Y., An e cient hybrid conjugate gradient method for unconstrained
optimization, Ann. Oper. Res., 103(2001), no. 1, 33-47.
Daniel, J.W., The conjugate gradient method for linear and nonlinear operator equations,
SIAM J. Optim., 10(1967), no. 1, 10-26.
Delladji, S., Bellou , M., Sellami, B., Behavior of the combination of PRP and HZ
methods for unconstrained optimization, Numer. Algebra Control Optim., 11(2021), no.
, 377-389.
Djordjevi c, S.S., New hybrid conjugate gradient method as a convex combination of LS
and FR methods, Acta Math. Sci. Ser. B (Engl. Ed.), 39(2019), no 1, 214-228.
Fletcher, R., Practical Methods of Optimization, vol. 1: Unconstrained Optimization,
John Wiley & Sons, New York, 1987.
Gazi, S., Khatab, H., New iterative conjugate gradient method for nonlinear uncon-
strained optimization using homptopy technique, IOSR Journal of Mathmatics, (2014),
-82.
Hager, W.W., Zhang, H., A new conjugate gradient method with guaranteed descent and
an e cient line search, SIAM J. Optim., 16(2005), no. 1, 170-192.
Hager, W.W., Zhang, H., A survey of nonlinear conjugate gradient methods, Pac. J.
Optim., 2(2006), no. 1, 35-58.
Hestenes, M., Methods of conjugate gradients for solving linear systems, Research Jour-
nal of the National Bureau of Standards, 49(1952), no. 22, 409-436.
Liu, Y., Storey, C., E cient generalized conjugate gradient algorithms, Part 1, J. Optim.
Theory Appl., 69(1991), no. 1, 129-137.
Polak, E., Ribiere, G., Note sur la convergence des m ethodes de directions conjug ees,
ESAIM: Math. Model. Numer. Anal., 3(1969), no. R1, 35-43.
Polyak, B.T., The conjugate gradient method in extremal problems, Comput. Math.
Math. Phys., 9(1969), no. 4, 94-112.
Rivaie, M., Mustafa, M., Abashar, A., A new class of nonlinear conjugate gradient
coe cients with exact and inexact line searches, Appl. Math. Comput., 268(2015), 1152-
Rivaie, M., Mustafa, M., June, L.W., Mohd, I., A new class of nonlinear conjugate
gradient coe cient with global convergence properties, Appl. Math. Comput., 218(2012),
no. 22, 11323-11332.
Shanno, D.F., Conjugate gradient methods with inexact searches, Math. Oper. Res.,
(1978), no. 3, 244-256.
Touati-Ahmed, D., Storey, C., E cient hybrid conjugate gradient technique, J. Optim.
Theory Appl., 64(1990), no. 2, 379-397.
Wang, L.J., Xu, L., Xie, Y.X., Du, Y.X., Han, X., A new hybrid conjugate gradient
method for dynamic force reconstruction, Advances in Mechanical Engineering, 11(2019),
no. 1, 1-21.
Zhang, L., Zhou, W., Two descent hybrid conjugate gradient methodq for optimization,
J. Comput. Appl. Math., 216(2008), no. 1, 251-264.
Zhifeng, D., Comments on hybrid conjugate gradient algorithm for unconstrained opti-
mization, J. Optim. Theory Appl., 175(2017), no. 1, 286-291.
Zoutendijk, G., Nonlinear programming, computational methods, Integer and Nonlinear
Programming (J. Abadie, ed.), North-Holland, Amsterdam, (1970), 37-86.
DOI: http://dx.doi.org/10.24193/subbmath.2024.2.14
Refbacks
- There are currently no refbacks.