A new splitting algorithm for equilibrium problems and applications
DOI:
https://doi.org/10.24193/subbmath.2022.1.09Keywords:
Equilibrium problem, splitting algorithm, strong pseudomonotonicity, extragradient algorithmAbstract
In this paper, we discuss a new splitting algorithm for solving equilibrium problems arising from Nash-Cournot oligopolistic equilibrium problems in electricity markets with non-convex cost functions. Under the strong pseudomonotonicity of the original bifunction and suitable conditions of the component bifunctions, we prove the strong convergence of the proposed algorithm. Our results improve and develop previously discussed extragradient-like splitting algorithms and general extragradient algorithms. We also present some numerical experiments and compare our algorithm with the existing ones.References
Anh, P.K., Hai, T.N.: Splitting extragradient-like algorithms for strongly pseudomonotone equilibrium problems. Numer. Algor. 76, 67-91 (2017)
Anh, P.K., Hai, T.N.: A splitting algorithm for equilibrium problem given by the difference of two bifunctions. J. Fix. Point Theory A. 20, 1-15 (2018)
Anh, P.N., Hai, T.N., Tuan, P.M.: On ergodic algorithms for equilibrium problems. J. Global Optim. 64, 179-195 (2016)
Anh, P.K., Hieu, D.V.: Parallel hybrid iterative methods for variational inequalities, equilibrium problems, and common fixed point problems. Vietnam J.Math. 44(2), 351-374 (2016)
Antipin, A.S.: Gradient approach of computing fixed points of equilibrium problems. J. Glob. Optim. 24, 285-309 (2002)
Blum, E., Oettli, W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63, 127-149 (1994)
Bello Cruz, J.Y., Mill´an, R.D.: A direct splitting method for nonsmooth variational inequalities. J. Optim. Theory Appl. 161, 729-737 (2014)
Brice˜no-Arias, L.M.: A Douglas-Rachford splitting method for solving equilibrium problems. Nonlinear Anal. 75, 6053-6059 (2012)
Damek, D., Wotao, Y.:A Three-operator splitting scheme and its optimization applications. Set-Valued Var. Anal. 25, 829-858 (2017)
Dinh, B.V., Muu, L.D.:A projection algorithm for solving pseudomonotone equilibrium problems and it’s application to a class of bilevel equilibria. Optimization 64(3), 559-575, (2015)
Hieu, D.V., Muu, L.D., Anh, P.K.: Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer. Algor. 73, 197-217 (2016)
Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Glob. Optim. 58(2), 341-350, (2014)
Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer, Berlin (2000)
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964-979 (1979)
Moudafi, A.: On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 359, 508-513 (2009)
Muu, L.D., Quy, N.V.: On existence and solution methods for strongly pseudomonotone equilibrium problems. Vietnam J. Math. 43, 229-238, (2015)
Santos, P., Scheimberg, S.: An inexact subgradient algorithm for equilibrium problems. Comput. Appl. Math. 30, 91-107 (2011)
Quoc, T.D. , Anh, P.N., Muu, L.D.: Dual extragradient algorithms extended to equilibrium problems. J. Glob. Optim. 52(1), 139-159 (2012)
Quoc, T.D., Muu, L.D., Nguyen, V.H.: Extragradient algorithms extended to equilibrium problems. Optimization 57(6), 749-776 (2008)
Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton, New Jersey (1970)
Dong, N.T.P., Strodiot, J.J., Van, N.T.T., Hien, N.V.: A family of extragradient methods for solving equilibrium problems. J. Ind. Manag. Optim. 11, 619-630 (2015)
Xu, H.K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. 66(2), 240-256 (2002)
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.