A new splitting algorithm for equilibrium problems and applications
Abstract
Keywords
Full Text:
PDFReferences
Anh, P.K., Hai, T.N.: Splitting extragradient-like algorithms for strongly pseudomonotone equilibrium problems. Numer. Algor. 76, 67-91 (2017)
Anh, P.K., Hai, T.N.: A splitting algorithm for equilibrium problem given by the difference of two bifunctions. J. Fix. Point Theory A. 20, 1-15 (2018)
Anh, P.N., Hai, T.N., Tuan, P.M.: On ergodic algorithms for equilibrium problems. J. Global Optim. 64, 179-195 (2016)
Anh, P.K., Hieu, D.V.: Parallel hybrid iterative methods for variational inequalities, equilibrium problems, and common fixed point problems. Vietnam J.Math. 44(2), 351-374 (2016)
Antipin, A.S.: Gradient approach of computing fixed points of equilibrium problems. J. Glob. Optim. 24, 285-309 (2002)
Blum, E., Oettli, W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63, 127-149 (1994)
Bello Cruz, J.Y., Mill´an, R.D.: A direct splitting method for nonsmooth variational inequalities. J. Optim. Theory Appl. 161, 729-737 (2014)
Brice˜no-Arias, L.M.: A Douglas-Rachford splitting method for solving equilibrium problems. Nonlinear Anal. 75, 6053-6059 (2012)
Damek, D., Wotao, Y.:A Three-operator splitting scheme and its optimization applications. Set-Valued Var. Anal. 25, 829-858 (2017)
Dinh, B.V., Muu, L.D.:A projection algorithm for solving pseudomonotone equilibrium problems and it’s application to a class of bilevel equilibria. Optimization 64(3), 559-575, (2015)
Hieu, D.V., Muu, L.D., Anh, P.K.: Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer. Algor. 73, 197-217 (2016)
Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Glob. Optim. 58(2), 341-350, (2014)
Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer, Berlin (2000)
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964-979 (1979)
Moudafi, A.: On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 359, 508-513 (2009)
Muu, L.D., Quy, N.V.: On existence and solution methods for strongly pseudomonotone equilibrium problems. Vietnam J. Math. 43, 229-238, (2015)
Santos, P., Scheimberg, S.: An inexact subgradient algorithm for equilibrium problems. Comput. Appl. Math. 30, 91-107 (2011)
Quoc, T.D. , Anh, P.N., Muu, L.D.: Dual extragradient algorithms extended to equilibrium problems. J. Glob. Optim. 52(1), 139-159 (2012)
Quoc, T.D., Muu, L.D., Nguyen, V.H.: Extragradient algorithms extended to equilibrium problems. Optimization 57(6), 749-776 (2008)
Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton, New Jersey (1970)
Dong, N.T.P., Strodiot, J.J., Van, N.T.T., Hien, N.V.: A family of extragradient methods for solving equilibrium problems. J. Ind. Manag. Optim. 11, 619-630 (2015)
Xu, H.K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. 66(2), 240-256 (2002)
DOI: http://dx.doi.org/10.24193/subbmath.2022.1.09
Refbacks
- There are currently no refbacks.