Hermite-Hadamard type fractional integral inequalities for MT$_{(m,\varphi)}$-preinvex functions

Artion Kashuri, Rozana Liko

Abstract


In the present paper, the notion of MT$_{(m,\varphi)}$-preinvex function is introduced. Moreover, some generalizations of Hermite-Hadamard type inequalities for MT$_{(m,\varphi)}$-preinvex functions that are twice differentiable via Riemann-Liouville fractional integrals are established. At the end, some applications to special means are given. These general inequalities give us some new estimates for Hermite-Hadamard type fractional integral inequalities.

Keywords


Hermite-Hadamard’ type inequality; MT-convex function; H\"{o}lder's inequality; power mean inequality; Riemann-Liouville fractional integral; $m$-invex; $P$-function.

Full Text:

PDF

References


bibitem{DLL}

T. S.~ Du, J. G.~ Liao, Y. J.~ Li

newblock Properties and integral inequalities of Hadamard-Simpson type for the generalized $(s,m)$-preinvex functions

newblock {em J. Nonlinear Sci. Appl.}, $mathbf{9}$, (2016), 3112-3126.

bibitem{DPE}

S. S.~ Dragomir, J.~ Pev{c}ari'{c}, L. E.~ Persson

newblock Some inequalities of Hadamard type

newblock {em Soochow J. Math.}, $mathbf{21}$, (1995), 335-341.

bibitem{An}

T.~ Antczak

newblock Mean value in invexity analysis

newblock {em Nonlinear Anal.}, $mathbf{60}$, (2005), 1473-1484.

bibitem{QiXi}

F. ~ Qi, B. Y. ~ Xi

newblock Some integral inequalities of Simpson type for $GA-epsilon$-convex functions

newblock {em Georgian Math. J.}, $mathbf{20}$, 5 (2013), 775-788.

bibitem{YYT}

X. M.~ Yang, X. Q.~ Yang, K. L.~ Teo

newblock Generalized invexity and generalized invariant monotonicity

newblock {em J. Optim. Theory Appl.}, $mathbf{117}$, (2003), 607-625.

bibitem{Pi}

R.~ Pini

newblock Invexity and generalized convexity

newblock {em Optimization.}, $mathbf{22}$, (1991), 513-525.

bibitem{Kaavoz}

H.~ Kavurmaci, M.~ Avci, M. E.~ "{O}zdemir

newblock New inequalities of Hermite-Hadamard type for convex functions with applications

newblock {em arXiv:1006.1593v1 [math. CA]}, (2010), 1-10.

bibitem{SCB}

D. D.~ Stancu, G.~ Coman, P.~ Blaga

newblock Analizu{a} numericu{a} c{s}i teoria aproximu{a}rii

newblock {em Cluj-Napoca: Presa Universitaru{a} Clujeanu{a}.}, Vol. $mathbf{II}$, (2002).

bibitem{WLiu}

W.~ Liu

newblock New integral inequalities involving beta function via $P$-convexity

newblock {em Miskolc Math Notes.}, $mathbf{15}$, 2 (2014), 585-591.

bibitem{OSA}

M. E.~ "{O}zdemir, E.~ Set, M.~ Alomari

newblock Integral inequalities via several kinds of convexity

newblock {em Creat. Math. Inform.}, $mathbf{20}$, 1 (2011), 62-73.

bibitem{LWPa}

W.~ Liu, W.~ Wen, J.~ Park

newblock Hermite-Hadamard type inequalities for MT-convex

functions via classical integrals and fractional integrals

newblock {em J. Nonlinear Sci. Appl.}, $mathbf{9}$, (2016), 766-777.

bibitem{Liu}

W.~ Liu, W.~ Wen, J.~ Park

newblock Ostrowski type fractional integral inequalities for MT-convex functions

newblock {em Miskolc Mathematical Notes.}, $mathbf{16}$, 1 (2015), 249-256.

bibitem{Bullen}

~Bullen, ~P.S

newblock Handbook of Means and Their Inequalities

newblock {em Kluwer Academic Publishers}, Dordrecht, (2003).




DOI: http://dx.doi.org/10.24193/subbmath.2017.4.03

Refbacks

  • There are currently no refbacks.