Characterizations of hilbertian norms in a real smooth space involving area of a triangle

Teodor Precupanu

Abstract


In an earlier paper, we have defined the heights of a nontrivial triangle with respect to Birchoff orthogonality in a real smooth space $X$, $\mbox{dim}\, \mbox{X} \geq 2$. In the present paper, we remark that, generally, the area of a nontrivial triangle have not the same value for different heights of the triangle. The propose of this paper is to characterize the norms of the space having property that the area of any triangle is well defined (independent of considered height). In this line we give six equivalent properties using the directional derivative of the norm. For example, the area is well defined for all triangles if and only if Birchoff orthogonality is symmetric. Consequently, according to a well known result of Leduc, if $\mbox{dim} X\geq 3$ each of those six properties characterizes the hilbertian norms (generated by inner products).

Keywords


smooth space, norm derivative, Birchoff orthogonality, height of a triangle, hilbertian norm.

Full Text:

PDF

References


Alsina, C., Guijarro, P., Tomas, M.S., {it On heights in real normed spaces and characterizations of inner product structures,} J. Inst. Math. Comput. Sci. Math. Ser., {bf 6} (1993), 151-159.

Alsina, C., Guijarro, P., Tomas, M.S., {it A characterization of inner product space based on a property of height's transformation,} Arch. Mat., {bf 6} (1993), 560-566.

Alsina, C., Guijarro, P., Tomas, M.S., {it Some remarkables lines of triangles in real normed spaces and characterizations of inner product structures}, Aequationes Math., {bf 54} (1997), 234-241.

Alsina, C., Sikorska, J., Tomas, M.S., {it Norm derivative characterizations of inner product spaces,} World Sci. Publish. Co. (2010), 188 pp.

Amir, D., {it Characterizations of Inner Product Spaces}, Birkhauser Verlag, Basel-Boston-Stuttgart, (1986).

Barbu, V., Precupanu, T., {it Convexity and Optimization in Banach Spaces,} Fourth Edition, Springer, Dordrecht Heidelberg London New York, 2012.

Diestel, I., {it Geometry of Banach Spaces Selected topics,} Lecture Notes in Mathematics. Springer, Berlin, 1978.

Giles, J.R., {it On a characterization of differentiability of the norm of a normed linear spaces,} J. Austral. Math. Soc., {bf 12} (1971), 106-114.

Guijarro, P., Tomas, M.S., {it Characterizations of inner product spaces by geometrical properties of the heights in a triangle,} Arch. Math., {bf 73} (1999), 64-72.

Ionicu{a}, I., {it Bisectrices of a triangle in a linear normed space and hilbertian norms,} An. c{S}t. Univ. Iac{s}i, {bf 58} (2012), 145-156.

Joichi, J.I., {it More characterizations of inner product spaces,} Proc. Amer. Math. Soc., {bf 19} (1968), 1180-1186.

Leduc, M., {it Characterizations des espaces euclidiens,} C.R. Acad. Sci. Paris, Ser. A-B, {bf 268} (1969), 943-946.

Papini, P.L., {it Inner products and norm derivatives,} J. Math. Anal. Appl., {bf 91} (1983), 592-598.

Precupanu, T., Ionicu{a}, I., {it Heights of a triangle in a linear normed space and hilbertian norms,} A. St. Univ. ,,Al.I. Cuza" Iasi, Matematica, {bf 55} (2009), 35-43.

Precupanu, T., {it Characterizations of hilbertian norms,} Bull. U.M.I. (5) 15-B (1978), 161-169.

Precupanu, T., {it On a characterization of hilbertian norms,} An. St. Univ. ,,Al.I. Cuza" Iasi, Matematica, {bf 56} (2010).

Tapia, R.A., {it A characterizations of inner product spaces,} Proc. AMS, {bf 41} (1973), 569-574.




DOI: http://dx.doi.org/10.24193/subbmath.2022.1.10

Refbacks

  • There are currently no refbacks.