Exponential dichotomy and invariant manifolds of semi-linear differential equations on the line
Abstract
Keywords
Full Text:
PDFReferences
Barreira, L., Valls, C., Strong and weak admissibility of L1 spaces, Electron. J. Qual. Theory Di er. Equ., 78(2017), 1-22.
Chicone, C., Ordinary Differential Equations with Applications, Springer, New York, 2006.
Chicone, C., Latushkin, Y., Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surveys and Monographs vol. 70, Providence RI, Amer. Math. Soc., 1999.
Coppel, W.A., Dichotomies in Stability Theory, Lecture Notes in Math., 629, Springer, Berlin, 1978.
Daleckii, Ju.L., Krein, M.G., Stability of Solutions of Differential Equations in Banach Space, Transl. Math. Monogr., 43, Amer. Math. Soc., Provindence, RI, 1974.
Duoc, T.V., Bounded and periodic solutions of inhomogeneous linear evolution equations, Commun. Korean Math. Soc., 36(2021), no. 4, 759-770.
Elaydi, S., H ajek, O., Exponential dichotomy and trichotomy of nonlinear differential equations, Differential Integral Equations, 3(1990), 1201-1224.
Hirsch, N., Pugh, C., Shub, M., Invariant Manifolds, Lecture Notes in Math., vol. 183, Springer, New York, 1977.
Huy, N.T., Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal., 235(2006), 330-354.
Huy, N.T., Invariant manifolds of admissible classes for semi-linear evolution equations, J. Differential Equations, 246(2009), 1820-1844.
Huy, N.T., Duoc, T.V., Integral manifolds and their attraction property for evolution equations in admissible function spaces, Taiwanese J. Math., 16(2012), 963-985.
Latushkin, Y., Randolph, T., Schnaubelt, R., Exponential dichotomy and mild solutions of nonautonomous equations in Banach spaces, J. Dynam. Differential Equations, 10(1998), 489-510.
Massera, J.L., Scha er, J.J., Linear Differential Equations and Function Spaces, Academic Press, New York, 1966.
Perko, L., Differential Equations and Dynamical Systems, Springer, New York, 2001.
Perron, O., Die stabilitatsfrage bei differentialgeighungen, Math. Z., 32(1930), 703-728.
Rabiger, F., Schnaubelt, R., The spectral mapping theorem for evolution semigroups on spaces of vector-valued functions, Semigroup Forum, 52(1996), 225-239.
Sasu, A.L., Integral equations on function spaces and dichotomy on the real line, Integral Equations Operator Theory, 58(2007), 133-152.
Sasu, A.L., Pairs of function spaces and exponential dichotomy on the real line, Adv. Di er. Equ., (2010), Article ID 347670, 1-15.
Sasu, A.L., Sasu, B., Exponential dichotomy on the real line and admissibility of function spaces, Integral Equations Operator Theory, 54(2006), 113-130.
DOI: http://dx.doi.org/10.24193/subbmath.2024.1.09
Refbacks
- There are currently no refbacks.