On a coupled system of viscoelastic wave equation of infinite memory with acoustic boundary conditions

Abdelaziz Limam, Benyattou Benabderrahmane, Yamna Boukhatem

Abstract


This work deals with a coupled system of viscoelastic wave equation of infinite memory with mixed Dirichlet-Neumann boundary conditions. The coupling is via by the acoustic boundary conditions on a portion of the boundary. The semigroup theory is used to show the well posedness and regularity of the initial and boundary value problem. Moreover, we investigate exponential stability of the system taking into account Gearhart-Pruss’ theorem.


Keywords


Viscoelastic damping; acoustic boundary conditions; well posedness; exponential stability

Full Text:

PDF

References


Alabau-Boussouira, F., Stabilisation fronti`ere indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris S´er. I. 328(1999), no. 11, 1015-1020.

Alabau-Boussouira, F., Cannarsa, P., Komornik, V., Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ. 2(2002), no. 2, 127-150.

Almeida, R. G. C., Santos, M. L., Lack of exponential decay of a coupled system of wave equations with memory, Nonlinear Anal. RWA. 12(2011), no. 2, 1023-1032.

Apalara, T. A., Raposo, C. A., Nonato, C. A. S., Exponential stability for

laminated beams with a frictional damping, Arch. Math. 114(2020), no. 4, 471-480.

Beale, J. T., Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J. 25(1976), no. 9, 895-917.

Benomar, K., Benaissa, A., Optimal decay rates for the acoustic wave motions with boundary memory damping, Stud. Univ. Babe¸s-Bolyai Math., 65(2020), no. 3, 471-482.

Borichev, A., Tomilov, Y., Optimal polynomial decay of functions and operator semigroups, Math. Ann. 347(2009), no. 2, 455-478.

Boukhatem, Y., Benabderrahmane, B., Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions, Nonlinear Anal. TMA. 97(2014), 191-209.

Cordeiro, S. M. S., Lobato, R. F. C., Raposo, C. A., Optimal polynomial decay for a coupled system of wave with past history, Open J. Math. Anal. 4(2020), no. 1, 49-59.

Frota, C. L., Larkin, N. A., Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains, in Contributions to nonlinear analysis, (T. Cazenave et al., Ed.), Progr. Nonlinear Differential Equations Appl. 66, Birkh¨auser, Basel, 2005, 297-312.

Komornik, V., Bopeng, R., Boundary stabilization of compactly coupled wave equations, Asymptot. Anal. 14(1997), no. 4, 339{359.

Limam, A., Boukhatem, Y., Benabderrahmane, B., New general stability for a variable coefficients thermo-viscoelastic coupled system of second sound with acoustic boundary conditions, Comput. Appl. Math. 40(2021), no. 3, 88.

Liu, Z., Zheng, S., Semigroups associated with dissipative systems, CRC Press, 1999.

Morse, P. M., Ingard, K. U., Theoretical acoustics, Princeton University Press, Princeton, NJ, 1986.

Peralta, G. R., Stabilization of the wave equation with acoustic and delay boundary conditions, Semigroup Forum 96(2018), no. 2, 357-376.

Pr¨uss, J., Decay properties for the solutions of a partial differential equation with memory, Arch. Math. 92(2009), no. 2, 158-173.

Pr¨uss, J., On the spectrum of C0−semigroups, Tran. Amer. Math. Soc. 284(1984), no. 2, 847-85.




DOI: http://dx.doi.org/10.24193/subbmath.2024.1.11

Refbacks

  • There are currently no refbacks.